Author: European Commission. Directorate General for Research
Publisher:
ISBN:
Category : Fuel cells
Languages : en
Pages : 38
Book Description
Hydrogen Energy and Fuel Cells
Author: European Commission. Directorate General for Research
Publisher:
ISBN:
Category : Fuel cells
Languages : en
Pages : 38
Book Description
Publisher:
ISBN:
Category : Fuel cells
Languages : en
Pages : 38
Book Description
Polymer Electrolyte Fuel Cells
Author: Alejandro A. Franco
Publisher: CRC Press
ISBN: 9814310824
Category : Science
Languages : en
Pages : 618
Book Description
This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related to PEFC materials degradation, and ensures a strong balance between experimental and theoretical analysis and preparation techniques with several practical applications for both the research and the industrial communities.
Publisher: CRC Press
ISBN: 9814310824
Category : Science
Languages : en
Pages : 618
Book Description
This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related to PEFC materials degradation, and ensures a strong balance between experimental and theoretical analysis and preparation techniques with several practical applications for both the research and the industrial communities.
PEM Fuel Cells
Author: Yun Wang
Publisher: Momentum Press
ISBN: 1606502476
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.
Publisher: Momentum Press
ISBN: 1606502476
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.
PEM Fuel Cell Modeling and Simulation Using Matlab
Author: Colleen Spiegel
Publisher: Elsevier
ISBN: 0080559018
Category : Computers
Languages : en
Pages : 454
Book Description
Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations
Publisher: Elsevier
ISBN: 0080559018
Category : Computers
Languages : en
Pages : 454
Book Description
Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations
Recent Trends in Fuel Cell Science and Technology
Author: S. Basu
Publisher: Springer Science & Business Media
ISBN: 0387688153
Category : Science
Languages : en
Pages : 383
Book Description
This book covers all the proposed fuel cell systems including PEMFC, SOFC, PAFC, MCFC, regenerative fuel cells, direct alcohol fuel cells, and small fuel cells to replace batteries.
Publisher: Springer Science & Business Media
ISBN: 0387688153
Category : Science
Languages : en
Pages : 383
Book Description
This book covers all the proposed fuel cell systems including PEMFC, SOFC, PAFC, MCFC, regenerative fuel cells, direct alcohol fuel cells, and small fuel cells to replace batteries.
Fuel Cell Engines
Author: Matthew M. Mench
Publisher: John Wiley & Sons
ISBN: 0471689580
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making.
Publisher: John Wiley & Sons
ISBN: 0471689580
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making.
Conducting Polymer Hybrids
Author: Vijay Kumar
Publisher: Springer
ISBN: 3319464582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. “Conducting Polymer Hybrids” is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.
Publisher: Springer
ISBN: 3319464582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. “Conducting Polymer Hybrids” is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.
Fuel Cells and Hydrogen
Author: Viktor Hacker
Publisher: Elsevier
ISBN: 0128115378
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Fuel Cells and Hydrogen: From Fundamentals to Applied Research provides an overview of the basic principles of fuel cell and hydrogen technology, which subsequently allows the reader to delve more deeply into applied research. In addition to covering the basic principles of fuel cells and hydrogen technologies, the book examines the principles and methods to develop and test fuel cells, the evaluation of the performance and lifetime of fuel cells and the concepts of hydrogen production. Fuel Cells and Hydrogen: From Fundamentals to Applied Research acts as an invaluable reference book for fuel cell developers and students, researchers in industry entering the area of fuel cells and lecturers teaching fuel cells and hydrogen technology. - Includes laboratory methods for fuel cell characterization and manufacture - Outlines approaches in modelling components, cells and stacks - Covers practical and theoretical methods for hydrogen production and storage
Publisher: Elsevier
ISBN: 0128115378
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Fuel Cells and Hydrogen: From Fundamentals to Applied Research provides an overview of the basic principles of fuel cell and hydrogen technology, which subsequently allows the reader to delve more deeply into applied research. In addition to covering the basic principles of fuel cells and hydrogen technologies, the book examines the principles and methods to develop and test fuel cells, the evaluation of the performance and lifetime of fuel cells and the concepts of hydrogen production. Fuel Cells and Hydrogen: From Fundamentals to Applied Research acts as an invaluable reference book for fuel cell developers and students, researchers in industry entering the area of fuel cells and lecturers teaching fuel cells and hydrogen technology. - Includes laboratory methods for fuel cell characterization and manufacture - Outlines approaches in modelling components, cells and stacks - Covers practical and theoretical methods for hydrogen production and storage
Polymer Membranes for Fuel Cells
Author: Javaid Zaidi
Publisher: Springer Science & Business Media
ISBN: 0387735321
Category : Science
Languages : en
Pages : 439
Book Description
From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
Publisher: Springer Science & Business Media
ISBN: 0387735321
Category : Science
Languages : en
Pages : 439
Book Description
From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
High Temperature Polymer Electrolyte Membrane Fuel Cells
Author: Qingfeng Li
Publisher: Springer
ISBN: 3319170821
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
Publisher: Springer
ISBN: 3319170821
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.