Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 336
Book Description
Development of a Bridge Construction Live Load Analysis Guide
Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 336
Book Description
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 336
Book Description
LRFD Guide Specifications for the Design of Pedestrian Bridges
Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 1560514698
Category : Bridges
Languages : en
Pages : 38
Book Description
Publisher: AASHTO
ISBN: 1560514698
Category : Bridges
Languages : en
Pages : 38
Book Description
Timber Bridges
Author: Michael A. Ritter
Publisher:
ISBN: 9781410221919
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Timber's strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction. Timber is capable of supporting short-term overloads without adverse effects. Contrary to popular belief, large wood members provide good fire resistance qualities that meet or exceed those of other materials in severe fire exposures. From an economic standpoint, wood is competitive with other materials on a first-cost basis and shows advantages when life cycle costs are compared. Timber bridges can be constructed in virtually any weather conditions, without detriment to the material. Wood is not damaged by continuous freezing and thawing and resists harmful effects of de-icing agents, which cause deterioration in other bridge materials. Timber bridges do not require special equipment for installation and can normally be constructed without highly skilled labor. They also present a natural and aesthetically pleasing appearance, particularly in natural surroundings. The misconception that wood provides a short service life has plagued timber as a construction material. Although wood is susceptible to decay or insect attack under specific conditions, it is inherently a very durable material when protected from moisture. Many covered bridges built during the 19th century have lasted over 100 years because they were protected from direct exposure to the elements. In modem applications, it is seldom practical or economical to cover bridges; however, the use of wood preservatives has extended the life of wood used in exposed bridge applications. Using modem application techniques and preservative chemicals, wood can now be effectively protected from deterioration for periods of 50 years or longer. In addition, wood treated with preservatives requires little maintenance and no painting. Another misconception about wood as a bridge material is that its use is limited to minor structures of no appreciable size. This belief is probably based on the fact that trees for commercial timber are limited in size and are normally harvested before they reach maximum size. Although tree diameter limits the size of sawn lumber, the advent of glued-laminated timber (glulam) some 40 years ago provided designers with several compensating alternatives. Glulam, which is the most widely used modem timber bridge material, is manufactured by bonding sawn lumber laminations together with waterproof structural adhesives. Thus, glulam members are virtually unlimited in depth, width, and length and can be manufactured in a wide range of shapes. Glulam provides higher design strengths than sawn lumber and provides better utilization of the available timber resource by permitting the manufacture of large wood structural elements from smaller lumber sizes. Technological advances in laminating over the past four decades have further increased the suitability and performance of wood for modern highway bridge applications.
Publisher:
ISBN: 9781410221919
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Timber's strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction. Timber is capable of supporting short-term overloads without adverse effects. Contrary to popular belief, large wood members provide good fire resistance qualities that meet or exceed those of other materials in severe fire exposures. From an economic standpoint, wood is competitive with other materials on a first-cost basis and shows advantages when life cycle costs are compared. Timber bridges can be constructed in virtually any weather conditions, without detriment to the material. Wood is not damaged by continuous freezing and thawing and resists harmful effects of de-icing agents, which cause deterioration in other bridge materials. Timber bridges do not require special equipment for installation and can normally be constructed without highly skilled labor. They also present a natural and aesthetically pleasing appearance, particularly in natural surroundings. The misconception that wood provides a short service life has plagued timber as a construction material. Although wood is susceptible to decay or insect attack under specific conditions, it is inherently a very durable material when protected from moisture. Many covered bridges built during the 19th century have lasted over 100 years because they were protected from direct exposure to the elements. In modem applications, it is seldom practical or economical to cover bridges; however, the use of wood preservatives has extended the life of wood used in exposed bridge applications. Using modem application techniques and preservative chemicals, wood can now be effectively protected from deterioration for periods of 50 years or longer. In addition, wood treated with preservatives requires little maintenance and no painting. Another misconception about wood as a bridge material is that its use is limited to minor structures of no appreciable size. This belief is probably based on the fact that trees for commercial timber are limited in size and are normally harvested before they reach maximum size. Although tree diameter limits the size of sawn lumber, the advent of glued-laminated timber (glulam) some 40 years ago provided designers with several compensating alternatives. Glulam, which is the most widely used modem timber bridge material, is manufactured by bonding sawn lumber laminations together with waterproof structural adhesives. Thus, glulam members are virtually unlimited in depth, width, and length and can be manufactured in a wide range of shapes. Glulam provides higher design strengths than sawn lumber and provides better utilization of the available timber resource by permitting the manufacture of large wood structural elements from smaller lumber sizes. Technological advances in laminating over the past four decades have further increased the suitability and performance of wood for modern highway bridge applications.
Design and Construction of Bridge Approaches
Author: Harvey E. Wahls
Publisher: Transportation Research Board
ISBN: 9780309049054
Category : Technology & Engineering
Languages : en
Pages : 56
Book Description
Includes case histories of the Dumbarton Bridge (San Francisco Bay, Calif.), the Rainier Avenue Embankment (Seattle, Wash.) and the Gallows Road Grade Separation (Fairfax, Va.)
Publisher: Transportation Research Board
ISBN: 9780309049054
Category : Technology & Engineering
Languages : en
Pages : 56
Book Description
Includes case histories of the Dumbarton Bridge (San Francisco Bay, Calif.), the Rainier Avenue Embankment (Seattle, Wash.) and the Gallows Road Grade Separation (Fairfax, Va.)
WisDOT Research Program
Author:
Publisher:
ISBN:
Category : Highway research
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Highway research
Languages : en
Pages : 48
Book Description
Highway Bridge Superstructure Engineering
Author: Narendra Taly
Publisher: CRC Press
ISBN: 1466552182
Category : Technology & Engineering
Languages : en
Pages : 966
Book Description
A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.
Publisher: CRC Press
ISBN: 1466552182
Category : Technology & Engineering
Languages : en
Pages : 966
Book Description
A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.
Recommended Guide Specification for the Design of Externally Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements
Author: Abdul-Hamid Zureick
Publisher: Transportation Research Board
ISBN: 0309154855
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 655: Recommended Guide Specification for the Design of Externally Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements examines a recommended guide specification for the design of externally bonded Fiber-Reinforced Polymer (FRP) systems for the repair and strengthening of concrete bridge elements. The report addresses the design requirements for members subjected to different loading conditions including flexure, shear and torsion, and combined axial force and flexure. The recommended guide specification is supplemented by design examples to illustrate its use for different FRP strengthening applications.
Publisher: Transportation Research Board
ISBN: 0309154855
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 655: Recommended Guide Specification for the Design of Externally Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements examines a recommended guide specification for the design of externally bonded Fiber-Reinforced Polymer (FRP) systems for the repair and strengthening of concrete bridge elements. The report addresses the design requirements for members subjected to different loading conditions including flexure, shear and torsion, and combined axial force and flexure. The recommended guide specification is supplemented by design examples to illustrate its use for different FRP strengthening applications.
Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision
Author: Robby Caspeele
Publisher: CRC Press
ISBN: 1351857568
Category : Technology & Engineering
Languages : en
Pages : 5111
Book Description
This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.
Publisher: CRC Press
ISBN: 1351857568
Category : Technology & Engineering
Languages : en
Pages : 5111
Book Description
This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.
Accelerated Bridge Construction
Author: Mohiuddin Ali Khan
Publisher: Elsevier
ISBN: 0124072259
Category : Technology & Engineering
Languages : en
Pages : 651
Book Description
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel
Publisher: Elsevier
ISBN: 0124072259
Category : Technology & Engineering
Languages : en
Pages : 651
Book Description
The traveling public has no patience for prolonged, high cost construction projects. This puts highway construction contractors under intense pressure to minimize traffic disruptions and construction cost. Actively promoted by the Federal Highway Administration, there are hundreds of accelerated bridge construction (ABC) construction programs in the United States, Europe and Japan. Accelerated Bridge Construction: Best Practices and Techniques provides a wide range of construction techniques, processes and technologies designed to maximize bridge construction or reconstruction operations while minimizing project delays and community disruption. - Describes design methods for accelerated bridge substructure construction; reducing foundation construction time and methods by using pile bents - Explains applications to steel bridges, temporary bridges in place of detours using quick erection and demolition - Covers design-build systems' boon to ABC; development of software; use of fiber reinforced polymer (FRP) - Includes applications to glulam and sawn lumber bridges, precast concrete bridges, precast joints details; use of lightweight aggregate concrete, aluminum and high-performance steel
Federally Coordinated Program of Highway Research, Development, and Technology. Annual Progress Report. Fiscal Year 1985
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 704
Book Description