Development and Mechanistic Investigations of Gold-Catalyzed Reactions

Development and Mechanistic Investigations of Gold-Catalyzed Reactions PDF Author: Nathan David Shapiro
Publisher:
ISBN:
Category :
Languages : en
Pages : 596

Get Book Here

Book Description
Historically, chemists have been motivated by problems in total synthesis or by a desire to develop reactions of broad utility. In answer to these challenges, several approaches to fundamental research have been developed. In chapter 1, we describe how our reactivity-driven approach has led to the discovery of numerous synthetic tools. The development of new synthetically useful methodology often rests on an understanding of the mechanistic underpinnings of the desired transformation. This is particularly true when this knowledge forms the basis for subsequent mechanistic proposals. The coordination of an alkyne to a cationic Au(I) complex represents the prototypical mechanistic starting place for many Au(I)-catalyzed reactions. In chapter two, we describe the isolation and characterization of a gold(I)-coordinated alkyne. The crystal structure of this compound is compared to related Ag(I) and Cu(I) compounds. With these structures in hand, we can begin to understand the unique ability of Au(I) complexes to serve as effective %pi;-activation catalysts, especially in understanding why gold is often more effective than copper or silver. In addition to being able to activate %pi;-bonds toward nucleophilic attack, it has been proposed that gold is also capable of stabilizing adjacent carbocations. Such species (i.e. [L-Au-CR2]+) have been referred to as gold-carbenoids or gold-stabilized carbocations. In chapter 3, we describe a bonding model for these intermediates that suggests that while the gold-carbon bond order is generally less than or equal to one, this bond includes both %sigma;- and %pi;-type bonding. Furthermore, the position of a given Au-stabilized intermediate on a continuum ranging from gold-stabilized singlet carbene to gold-coordinated carbocation is dictated by both the carbene substituents and the ancillary ligand. This model provides an explanation for observed ancillary ligand effects and should enable more efficient reaction optimization. In chapter 4, a series of gold(I)-catalyzed rearrangement reactions of alkynyl sulfoxides, sulfimides and sulfur ylides are reported. Homopropargyl sulfoxides are rearranged to benzothiepinones or benzothiopines, while %alpha;-thioenones are formed in the reaction of propargyl sulfoxides. It is proposed that these reactions proceed via an %alpha;-carbonyl gold-carbenoid intermediate formed through gold-promoted oxygen atom transfer from sulfoxide to alkyne. In chapter 5, the development of a convenient gold(III)-catalyzed synthesis of azepines from the intermolecular annulation of propargyl esters and %alpha;, %beta;-unsaturated imines is discussed. Mechanistic experiments suggest that this formal [4 + 3]-cycloaddition reaction proceeds via a stepwise process involving intermolecular trapping of a gold-carbenoid intermediate and subsequent intramolecular trapping of the resulting allyl-gold intermediate. In chapter 6, we discuss the gold(III)-catalyzed [3+3]-cycloaddition reaction of propargyl esters and azomethine imines. This reaction provides a rapid entry into a wide range of substituted tetrahydropyridazine derivatives from simple starting materials. A mechanism similar to that proposed in chapter 5 is discussed, along with a detailed description of the consequences of this mechanism on the diastereoselectivity of the annulation reaction. In addition, a strategy for rendering this reaction asymmetric is presented.

Development and Mechanistic Investigations of Gold-Catalyzed Reactions

Development and Mechanistic Investigations of Gold-Catalyzed Reactions PDF Author: Nathan David Shapiro
Publisher:
ISBN:
Category :
Languages : en
Pages : 596

Get Book Here

Book Description
Historically, chemists have been motivated by problems in total synthesis or by a desire to develop reactions of broad utility. In answer to these challenges, several approaches to fundamental research have been developed. In chapter 1, we describe how our reactivity-driven approach has led to the discovery of numerous synthetic tools. The development of new synthetically useful methodology often rests on an understanding of the mechanistic underpinnings of the desired transformation. This is particularly true when this knowledge forms the basis for subsequent mechanistic proposals. The coordination of an alkyne to a cationic Au(I) complex represents the prototypical mechanistic starting place for many Au(I)-catalyzed reactions. In chapter two, we describe the isolation and characterization of a gold(I)-coordinated alkyne. The crystal structure of this compound is compared to related Ag(I) and Cu(I) compounds. With these structures in hand, we can begin to understand the unique ability of Au(I) complexes to serve as effective %pi;-activation catalysts, especially in understanding why gold is often more effective than copper or silver. In addition to being able to activate %pi;-bonds toward nucleophilic attack, it has been proposed that gold is also capable of stabilizing adjacent carbocations. Such species (i.e. [L-Au-CR2]+) have been referred to as gold-carbenoids or gold-stabilized carbocations. In chapter 3, we describe a bonding model for these intermediates that suggests that while the gold-carbon bond order is generally less than or equal to one, this bond includes both %sigma;- and %pi;-type bonding. Furthermore, the position of a given Au-stabilized intermediate on a continuum ranging from gold-stabilized singlet carbene to gold-coordinated carbocation is dictated by both the carbene substituents and the ancillary ligand. This model provides an explanation for observed ancillary ligand effects and should enable more efficient reaction optimization. In chapter 4, a series of gold(I)-catalyzed rearrangement reactions of alkynyl sulfoxides, sulfimides and sulfur ylides are reported. Homopropargyl sulfoxides are rearranged to benzothiepinones or benzothiopines, while %alpha;-thioenones are formed in the reaction of propargyl sulfoxides. It is proposed that these reactions proceed via an %alpha;-carbonyl gold-carbenoid intermediate formed through gold-promoted oxygen atom transfer from sulfoxide to alkyne. In chapter 5, the development of a convenient gold(III)-catalyzed synthesis of azepines from the intermolecular annulation of propargyl esters and %alpha;, %beta;-unsaturated imines is discussed. Mechanistic experiments suggest that this formal [4 + 3]-cycloaddition reaction proceeds via a stepwise process involving intermolecular trapping of a gold-carbenoid intermediate and subsequent intramolecular trapping of the resulting allyl-gold intermediate. In chapter 6, we discuss the gold(III)-catalyzed [3+3]-cycloaddition reaction of propargyl esters and azomethine imines. This reaction provides a rapid entry into a wide range of substituted tetrahydropyridazine derivatives from simple starting materials. A mechanism similar to that proposed in chapter 5 is discussed, along with a detailed description of the consequences of this mechanism on the diastereoselectivity of the annulation reaction. In addition, a strategy for rendering this reaction asymmetric is presented.

Gold-Catalyzed Cycloisomerization Reactions Through Activation of Alkynes

Gold-Catalyzed Cycloisomerization Reactions Through Activation of Alkynes PDF Author: Antoine Simonneau
Publisher: Springer
ISBN: 3319067079
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
Antoine Simonneau's thesis highlights the development of new cycloisomerization reactions through the activation of alkynes with gold complexes. First Simonneau describes 1,6-enynes and their direct conversion into allenes through 1,5-hydride or ester migration processes. The author and his team used appropriate propargylic functional groups to achieve this conversion. This study shows that O-tethered 1,6-enynes carrying a strained cycloalkane at the propargylic position could undergo a cyclopropanation/ring expansion cascade reaction. The author employed this rearrangement as the starting point in the design of a new macro cycle synthesis. The next part of the thesis focuses on the cycloisomerization of diynes involving as the first step of the process the rearrangement of one alkyne partner into an allene thanks to a gold-catalyzed 1,3-shift of a propargylic ester. The thesis discloses a new cycloisomerization pattern featuring a 1,5-carbonyl transfer, giving rise to unprecedented cross-conjugated diketones. In the final part of the research, Simmoneau investigates the gold-catalyzed cycloisomerization mechanism of 1,6-enynes and questions the intermediacy of gold acetylides. By the means of NMR and mass spectrometry analysis, theoretical treatment and solution experiments, it was possible to rule out the involvement of these species in the catalytic cycle. This thesis has led to a number of publications in high-impact journals.

Homogeneous Gold Catalysis

Homogeneous Gold Catalysis PDF Author: LeGrande M. Slaughter
Publisher: Springer
ISBN: 3319137220
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Expanding the Frontier of Gold-catalyzed Cyclizations and Rational Ligand Design

Expanding the Frontier of Gold-catalyzed Cyclizations and Rational Ligand Design PDF Author: Deepika Malhotra
Publisher:
ISBN:
Category : Catalysts
Languages : en
Pages : 213

Get Book Here

Book Description
The focus of my dissertation work is to study the gold-catalyzed intramolecular and intermolecular cyclizations involving oxonium intermediates towards the application of synthetically interesting frameworks under ambient conditions and developing a rational approach for the effective catalyst design in gold catalysis. We explored the goldcatalyzed oxygen-transfer reactions of 2-alkynyl-1,5-diketones or 2-alkynyl-5-ketoesters to furnish five-membered rings bearing a quaternary carbon tethered to a carbonyl group. The detailed mechanistic investigation on the newly proposed intramolecular [4+2] cycloaddition mechanism was performed by means of isotopic experiments and quantum chemical calculations. The reactivity of alkynylenolate was investigated in the reactions of allenic ketones and vinyl ketones which led to versatile syntheses of 2-alkynyl-1,5-diketones, 4-alkynyl-3-hydroxycyclohexones and 4-alkynylcyclohexenones. We also investigated the gold-catalyzed annulations of 2-alkynyl benzaldehyde with acyclic or cyclic vinyl ethers under very mild conditions, and successfully developed synthetically interesting dihydronaphthalenes, acetal-tethered isochromenes and bicyclo[2.2.2]octane derivatives often found in biologically active molecules and natural products. Although there have been numerous reviews and publications on new gold-catalyzed transformations, the development of new catalysts still relies on a hit-and-miss approach. Because the decay of the active cationic gold catalyst is the main reason for the high catalytic loading required for the majority of gold-catalyzed transformations, we developed a modular approach for effective catalyst design in gold catalysis. We discovered a new phosphine-based precatalyst that is broadly applicable and highly efficient - in the parts per million (ppm) range - at room temperature or slightly elevated temperatures (

Catalysis By Gold

Catalysis By Gold PDF Author: Geoffrey C Bond
Publisher: World Scientific
ISBN: 1908979852
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a

Metal-Catalyzed Oxidations of Organic Compounds

Metal-Catalyzed Oxidations of Organic Compounds PDF Author: Roger Sheldon
Publisher: Elsevier
ISBN: 0323150047
Category : Science
Languages : en
Pages : 447

Get Book Here

Book Description
Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic focuses on the oxidative transformations of functional groups. This book explores oxidation as being extensively used in the laboratory synthesis of fine organic chemicals and in the manufacture of large-volume petrochemicals. Organized into two parts encompassing 13 chapters, this book starts with an overview of the mechanistic principles of oxidation–reduction in biochemical, organic, and inorganic systems. This text then proceeds with a discussion of the use of molecular oxygen, hydrogen peroxide, and alkyl hydroperoxides as primary oxidants. Other chapters explore stoichiometric oxidations with metal oxidants, which include permanganate and chromic acid. This book discusses as well the synthetic applications of catalytic oxidations as well as the technology of petrochemical oxidation. The final chapter deals with the autoxidations of sulfur, phosphorus, and nitrogen compounds. This book is intended for chemists involved in organic synthesis, catalysis, and organometallic chemistry, both in academic institutions and in industrial laboratories.

Modern Gold Catalyzed Synthesis

Modern Gold Catalyzed Synthesis PDF Author: A. Stephen K. Hashmi
Publisher: John Wiley & Sons
ISBN: 3527319522
Category : Science
Languages : en
Pages : 419

Get Book Here

Book Description
With its impressive features, gold has led to completely new reaction types in recent years, which in turn have strongly influenced both organic catalysis and material science. Other fields where a significant amount of new results has been obtained include nanotechnology, self assembly/supramolecular systems and biochemical/medicinal chemistry. As a result, gold is one of the hottest topics in catalysis at the moment, with an increasing amount of research being carried out in this field. While focusing on homogeneous catalysis, this monograph also covers the main applications in heterogeneous catalysis. Following a look at the gold-catalyzed addition of heteroatom nucleophiles to alkynes, it goes on to discuss gold-catalyzed additions to allenes and alkenes, gold-catalyzed benzannulations, cycloisomerization and rearrangement reactions, as well as oxidation and reduction reactions. The whole is finished off with a section on gold-catalyzed aldol and related reactions and the application of gold-catalyzed reactions to natural product synthesis. Of interest to synthetic chemists and inorganic chemists, as well as organic chemists working in homogeneous catalysis, physical and technical chemists.

Mechanistic Insights and Functionalization of Alkynes in Homogeneous Gold Catalysis

Mechanistic Insights and Functionalization of Alkynes in Homogeneous Gold Catalysis PDF Author: Manish Kumar
Publisher:
ISBN:
Category : Catalysts
Languages : en
Pages : 185

Get Book Here

Book Description
The focus of my dissertation work was to study the basic mechanistic insights of gold-catalyzed reactions. Although the various mechanistic pathways of gold catalysis are better understood nowadays, numerous questions still remain unanswered concerning the nature of deactivation of the catalyst's active species, high resistance towards protodeauration, and how we can solve these problems to improve the efficiency of gold catalysis. To address these challenges in gold catalysis we conducted first a detailed experimental study to understand the mechanism of deactivation of gold active species. Based on the combination of experimental data, we proposed that gold disproportionation is preferred as compared to reduction of the active gold catalyst. To address the high resistance toward protodeauration, we explored a new strategy to enhance the efficacy of gold-catalyzed reactions through hydrogen-bonding assisted protodeauration using additives chosen for their pKBHX (hydrogen-bond basicity). To address the threshold phenomenon, we observed that high gold affinity impurities (halides, bases) in solvents, starting materials, filtration or drying agents could affect the reactivity of the gold catalyst adversely, which, in turn, may significantly reduce the TON of cationic gold. Use of a suitable acid activator (e.g. HOTf, In(OTf)3) reactivates the gold catalyst and makes the reaction proceed smoothly at low gold catalyst loading. To explore the reactivity of Au catalysts towards oxygen-atom transfer reactions, we investigated the gold-catalyzed addition of O-nucleophiles to alkynes and found that this reaction can produce synthetically important vinyl ether products in excellent yields and regioselectivities at room temperature. At higher temperature, 3,3-sigmatropic rearrangement of vinyl ether products gives access to highly functionalized benzotriazoles.

Gold Catalysis: An Homogeneous Approach

Gold Catalysis: An Homogeneous Approach PDF Author: Veronique Michelet
Publisher: World Scientific
ISBN: 1783265558
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
Research on designing new catalytic systems has been one of the most important fields in modern organic chemistry. One reason for this is the predominant contribution of catalysis to the concepts of atom economy and green chemistry in the 21st century. Gold, considered catalytically inactive for a long time, is now a fascinating partner of modern chemistry, as scientists such as Bond, Teles, Haruta, Hutchings, Ito and Hayashi opened new perspectives for the whole synthetic chemist community. This book presents the major advances in homogeneous catalysis, emphasizing the methodologies that create carbon-carbon and carbon-heteroatom bonds, the applications that create diversity and synthesize natural products, and the recent advances and challenges in asymmetric catalysis and computational research.It provides readers with in-depth information about homogeneous gold-catalyzed reactions and presents several explanations for the scientific design of a catalyst. Readers will be able to understand the entire gold area and find solutions to problems in catalysis.Gold Catalysis — An Homogeneous Approach is part of the Catalytic Science Series and features prominent authors who are experts in their respective fields.

Environmental Catalysis Over Gold-based Materials

Environmental Catalysis Over Gold-based Materials PDF Author: George Avgouropoulos
Publisher: Royal Society of Chemistry
ISBN: 1849735719
Category : Science
Languages : en
Pages : 239

Get Book Here

Book Description
This book presents the major developments in hydrogen-related catalytic and electrocatalytic reactions over gold-based materials over the last decade, including many of the advances made by academic and industrial researchers. Gold-based catalysts with potentially exciting new applications in hydrogen technology (e.g. purification of hydrogen, anode/cathode electrodes) are being investigated at a much higher rate than even before. A variety of techniques to synthesize, characterize and evaluate these materials is being employed. The book will be of interest to all those working in catalysis/green chemistry, in particular, to advanced level researchers in catalysis using gold-based materials. It is hoped that specialists in one reaction will read with interest the chapters on the neighbouring expertise. The book is also meant for PhD-students and advanced students interested in this area.