Author: Alexander R. Thieß
Publisher: Forschungszentrum Jülich
ISBN: 3893369066
Category :
Languages : en
Pages : 187
Book Description
Development and application of a massively parallel KKR Green function method for large scale systems
Author: Alexander R. Thieß
Publisher: Forschungszentrum Jülich
ISBN: 3893369066
Category :
Languages : en
Pages : 187
Book Description
Publisher: Forschungszentrum Jülich
ISBN: 3893369066
Category :
Languages : en
Pages : 187
Book Description
Rare Earth and Transition Metal Doping of Semiconductor Materials
Author: Volkmar Dierolf
Publisher: Woodhead Publishing
ISBN: 008100060X
Category : Science
Languages : en
Pages : 472
Book Description
Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. - Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices - Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics - Details the properties of semiconductors for spintronics
Publisher: Woodhead Publishing
ISBN: 008100060X
Category : Science
Languages : en
Pages : 472
Book Description
Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. - Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices - Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics - Details the properties of semiconductors for spintronics
Neutron Scattering
Author: Thomas Brückel
Publisher: Forschungszentrum Jülich
ISBN: 3893369651
Category :
Languages : en
Pages : 369
Book Description
Publisher: Forschungszentrum Jülich
ISBN: 3893369651
Category :
Languages : en
Pages : 369
Book Description
Interdomain Functional Dynamics of Phosphoglycerate Kinase Studied by Single-Molecule FRET
Author: Matteo Gabba
Publisher: Forschungszentrum Jülich
ISBN: 3893369430
Category :
Languages : en
Pages : 197
Book Description
Publisher: Forschungszentrum Jülich
ISBN: 3893369430
Category :
Languages : en
Pages : 197
Book Description
Internet of Things for Sustainable Community Development
Author: Abdul Salam
Publisher: Springer Nature
ISBN: 3030352919
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book covers how Internet of Things (IoT) has a role in shaping the future of our communities. The author shows how the research and education ecosystem promoting impactful solutions-oriented science can help citizenry, government, industry, and other stakeholders to work collaboratively in order to make informed, socially-responsible, science-based decisions. Accordingly, he shows how communities can address complex, interconnected socio-environmental challenges. This book addresses the key inter-related challenges in areas such as the environment, climate change, mining, energy, agro-economic, water, and forestry that are limiting the development of a sustainable and resilient society -- each of these challenges are tied back to IoT based solutions. Presents research into sustainable IoT with respect to wireless communications, sensing, and systems Provides coverage of IoT technologies in sustainability, health, agriculture, climate change, mining, energy, water management, and forestry Relevant for academics, researchers, policy makers, city planners and managers, technicians, and industry professionals in IoT and sustainability
Publisher: Springer Nature
ISBN: 3030352919
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book covers how Internet of Things (IoT) has a role in shaping the future of our communities. The author shows how the research and education ecosystem promoting impactful solutions-oriented science can help citizenry, government, industry, and other stakeholders to work collaboratively in order to make informed, socially-responsible, science-based decisions. Accordingly, he shows how communities can address complex, interconnected socio-environmental challenges. This book addresses the key inter-related challenges in areas such as the environment, climate change, mining, energy, agro-economic, water, and forestry that are limiting the development of a sustainable and resilient society -- each of these challenges are tied back to IoT based solutions. Presents research into sustainable IoT with respect to wireless communications, sensing, and systems Provides coverage of IoT technologies in sustainability, health, agriculture, climate change, mining, energy, water management, and forestry Relevant for academics, researchers, policy makers, city planners and managers, technicians, and industry professionals in IoT and sustainability
Frontiers in Materials Modelling and Design
Author: Vijay Kumar
Publisher: Springer Science & Business Media
ISBN: 3642804780
Category : Science
Languages : en
Pages : 448
Book Description
It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.
Publisher: Springer Science & Business Media
ISBN: 3642804780
Category : Science
Languages : en
Pages : 448
Book Description
It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.
Solid State Physics
Author: Giuseppe Grosso
Publisher: Academic Press
ISBN: 0123850312
Category : Science
Languages : en
Pages : 873
Book Description
Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research
Publisher: Academic Press
ISBN: 0123850312
Category : Science
Languages : en
Pages : 873
Book Description
Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research
Numerical Computations with GPUs
Author: Volodymyr Kindratenko
Publisher: Springer
ISBN: 3319065483
Category : Computers
Languages : en
Pages : 404
Book Description
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
Publisher: Springer
ISBN: 3319065483
Category : Computers
Languages : en
Pages : 404
Book Description
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
Transmission Electron Microscopy
Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Physics at Surfaces
Author: Andrew Zangwill
Publisher: Cambridge University Press
ISBN: 1316583260
Category : Science
Languages : en
Pages : 470
Book Description
Physics at Surfaces is a unique graduate-level introduction to the physics and chemical physics of solid surfaces, and atoms and molecules that interact with solid surfaces. A subject of keen scientific inquiry since the last century, surface physics emerged as an independent discipline only in the late 1960s as a result of the development of ultra-high vacuum technology and high speed digital computers. With these tools, reliable experimental measurements and theoretical calculations could at last be compared. Progress in the last decade has been truly striking. This volume provides a synthesis of the entire field of surface physics from the perspective of a modern condensed matter physicist with a healthy interest in chemical physics. The exposition intertwines experiment and theory whenever possible, although there is little detailed discussion of technique. This much-needed text will be invaluable to graduate students and researchers in condensed matter physics, physical chemistry and materials science working in, or taking graduate courses in, surface science.
Publisher: Cambridge University Press
ISBN: 1316583260
Category : Science
Languages : en
Pages : 470
Book Description
Physics at Surfaces is a unique graduate-level introduction to the physics and chemical physics of solid surfaces, and atoms and molecules that interact with solid surfaces. A subject of keen scientific inquiry since the last century, surface physics emerged as an independent discipline only in the late 1960s as a result of the development of ultra-high vacuum technology and high speed digital computers. With these tools, reliable experimental measurements and theoretical calculations could at last be compared. Progress in the last decade has been truly striking. This volume provides a synthesis of the entire field of surface physics from the perspective of a modern condensed matter physicist with a healthy interest in chemical physics. The exposition intertwines experiment and theory whenever possible, although there is little detailed discussion of technique. This much-needed text will be invaluable to graduate students and researchers in condensed matter physics, physical chemistry and materials science working in, or taking graduate courses in, surface science.