Author: Fabio Di Trapani
Publisher: Springer Nature
ISBN: 3031301250
Category : Science
Languages : en
Pages : 489
Book Description
This book highlights the latest advances, innovations, and applications in the field of structural and geotechnical engineering, as presented by leading international researchers and engineers at the 2nd Eurasian Conference on OpenSees—Open System for Earthquake Engineering Simulation (EOS), held in Turin, Italy, on July 7–8, 2022. The conference was meant to give an overview on the latest developments made with the OpenSees framework as well as to present research and practical outcomes in which OpenSees plays an important role. Conference topics cover cutting-edge applications of OpenSees in the field of structural and geotechnical engineering, the development of new elements and materials, and also the development of new pre- and post-processors. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Proceedings of the 2022 Eurasian OpenSees Days
Author: Fabio Di Trapani
Publisher: Springer Nature
ISBN: 3031301250
Category : Science
Languages : en
Pages : 489
Book Description
This book highlights the latest advances, innovations, and applications in the field of structural and geotechnical engineering, as presented by leading international researchers and engineers at the 2nd Eurasian Conference on OpenSees—Open System for Earthquake Engineering Simulation (EOS), held in Turin, Italy, on July 7–8, 2022. The conference was meant to give an overview on the latest developments made with the OpenSees framework as well as to present research and practical outcomes in which OpenSees plays an important role. Conference topics cover cutting-edge applications of OpenSees in the field of structural and geotechnical engineering, the development of new elements and materials, and also the development of new pre- and post-processors. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Publisher: Springer Nature
ISBN: 3031301250
Category : Science
Languages : en
Pages : 489
Book Description
This book highlights the latest advances, innovations, and applications in the field of structural and geotechnical engineering, as presented by leading international researchers and engineers at the 2nd Eurasian Conference on OpenSees—Open System for Earthquake Engineering Simulation (EOS), held in Turin, Italy, on July 7–8, 2022. The conference was meant to give an overview on the latest developments made with the OpenSees framework as well as to present research and practical outcomes in which OpenSees plays an important role. Conference topics cover cutting-edge applications of OpenSees in the field of structural and geotechnical engineering, the development of new elements and materials, and also the development of new pre- and post-processors. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Displacement-based seismic design for multi-storey cross laminated timber buildings
Author: Hummel, Johannes
Publisher: kassel university press GmbH
ISBN: 3737602883
Category :
Languages : en
Pages : 224
Book Description
Key Terms: cross laminated timber, displacement-based seismic design, time history analysis, multi-storey timber structures, hysteretic behaviour
Publisher: kassel university press GmbH
ISBN: 3737602883
Category :
Languages : en
Pages : 224
Book Description
Key Terms: cross laminated timber, displacement-based seismic design, time history analysis, multi-storey timber structures, hysteretic behaviour
From Materials to Structures: Advancement through Innovation
Author: Bijan Samali
Publisher: CRC Press
ISBN: 0203520017
Category : Technology & Engineering
Languages : en
Pages : 1224
Book Description
From Materials to Structures: Advancement through Innovation is a collection of peer-reviewed papers presented at the 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM22) held in Sydney Australia, from 11-14 December 2012 by academics, researchers and practising engineers mainly from Australasia and the Asia-Pacific r
Publisher: CRC Press
ISBN: 0203520017
Category : Technology & Engineering
Languages : en
Pages : 1224
Book Description
From Materials to Structures: Advancement through Innovation is a collection of peer-reviewed papers presented at the 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM22) held in Sydney Australia, from 11-14 December 2012 by academics, researchers and practising engineers mainly from Australasia and the Asia-Pacific r
Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation
Author:
Publisher: Government Printing Office
ISBN: 9780160926754
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Publisher: Government Printing Office
ISBN: 9780160926754
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Materials and Joints in Timber Structures
Author: Simon Aicher
Publisher: Springer Science & Business Media
ISBN: 9400778112
Category : Technology & Engineering
Languages : en
Pages : 815
Book Description
This book contains the contributions from the RILEM International Symposium on Materials and Joints in Timber Structures that was held in Stuttgart, Germany from October 8 to 10, 2013. It covers recent developments in the materials and the joints used in modern timber structures. Regarding basic wooden materials, the contributions highlight the widened spectrum of products comprising cross-laminated timber, glulam and LVL from hardwoods and block glued elements. Timber concrete compounds, cement bonded wood composites and innovative light-weight constructions represent increasingly employed alternatives for floors, bridges and facades. With regard to jointing technologies, considerable advances in both mechanical connections and glued joints are presented. Self-tapping screws have created unprecedented options for reliable, strong as well as ductile joints and reinforcement technologies. Regarding adhesives, which constitute the basis of the jointing/laminating technology of modern timber products, extended options for tailor-made bonding solutions have to be stated. Apart from melamine-urea and phenolic-resorcinol adhesives, one-component-polyurethanes, emulsion isocyanate polymers and epoxies offer a wide range of possibilities. The contributions dealing with experimental and numerical investigations on static, cyclic and seismic behavior of structures clearly reveal the enhanced potential of modern timber construction for reliable and sustainable buildings and bridges of the new millennium. The book is structured in nine thematic areas, being I) Structures II) Mechanical Connections III) Glued Joints and Adhesives IV) Timber and Concrete/Cement/Polymer Composites V) Cyclic, Seismic Behavior VI) Hardwood, Modified Wood and Bamboo VII) Cross-Laminated Timber VIII) Properties and Testing of Wood IX) Glulam
Publisher: Springer Science & Business Media
ISBN: 9400778112
Category : Technology & Engineering
Languages : en
Pages : 815
Book Description
This book contains the contributions from the RILEM International Symposium on Materials and Joints in Timber Structures that was held in Stuttgart, Germany from October 8 to 10, 2013. It covers recent developments in the materials and the joints used in modern timber structures. Regarding basic wooden materials, the contributions highlight the widened spectrum of products comprising cross-laminated timber, glulam and LVL from hardwoods and block glued elements. Timber concrete compounds, cement bonded wood composites and innovative light-weight constructions represent increasingly employed alternatives for floors, bridges and facades. With regard to jointing technologies, considerable advances in both mechanical connections and glued joints are presented. Self-tapping screws have created unprecedented options for reliable, strong as well as ductile joints and reinforcement technologies. Regarding adhesives, which constitute the basis of the jointing/laminating technology of modern timber products, extended options for tailor-made bonding solutions have to be stated. Apart from melamine-urea and phenolic-resorcinol adhesives, one-component-polyurethanes, emulsion isocyanate polymers and epoxies offer a wide range of possibilities. The contributions dealing with experimental and numerical investigations on static, cyclic and seismic behavior of structures clearly reveal the enhanced potential of modern timber construction for reliable and sustainable buildings and bridges of the new millennium. The book is structured in nine thematic areas, being I) Structures II) Mechanical Connections III) Glued Joints and Adhesives IV) Timber and Concrete/Cement/Polymer Composites V) Cyclic, Seismic Behavior VI) Hardwood, Modified Wood and Bamboo VII) Cross-Laminated Timber VIII) Properties and Testing of Wood IX) Glulam
CLT Handbook
Author: Erol Karacabeyli
Publisher:
ISBN: 9780864885531
Category : Engineered wood construction
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780864885531
Category : Engineered wood construction
Languages : en
Pages :
Book Description
Displacement-based Seismic Design of Structures
Author: M. J. N. Priestley
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
SEAOC Blue Book
Author:
Publisher:
ISBN: 9781936039036
Category : Building laws
Languages : en
Pages : 256
Book Description
This SEAOC Blue Book: Seismic Design Recommendations is the premier publication of the SEAOC Seismology Committee. The name Blue Book is renowned worldwide among engineers, researchers, and building officials. Since 1959, the SEAOC Blue Book, previously titled Recommended Lateral Force Requirements and Commentary, has been a prescient publication of earthquake engineering. The Blue Book has been at the vanguard of earthquake engineering in California and around the world. This edition of the Blue Books offers a series of articles, that cover specific topics, some related to a particular code provision and some more general relating to an area of practice. While different than the previous editions of the Blue Books, it builds upon the tremendous effort of those who have forged earthquake engineering practice via the previous half-century of Blue Book editions. The Blue Book provides: insight and discussion of earthquake engineering concepts; interpretations of sometimes ambiguous or conflicting provisions of various codes, standards, and guidelines; and practical guidance on design implementation.
Publisher:
ISBN: 9781936039036
Category : Building laws
Languages : en
Pages : 256
Book Description
This SEAOC Blue Book: Seismic Design Recommendations is the premier publication of the SEAOC Seismology Committee. The name Blue Book is renowned worldwide among engineers, researchers, and building officials. Since 1959, the SEAOC Blue Book, previously titled Recommended Lateral Force Requirements and Commentary, has been a prescient publication of earthquake engineering. The Blue Book has been at the vanguard of earthquake engineering in California and around the world. This edition of the Blue Books offers a series of articles, that cover specific topics, some related to a particular code provision and some more general relating to an area of practice. While different than the previous editions of the Blue Books, it builds upon the tremendous effort of those who have forged earthquake engineering practice via the previous half-century of Blue Book editions. The Blue Book provides: insight and discussion of earthquake engineering concepts; interpretations of sometimes ambiguous or conflicting provisions of various codes, standards, and guidelines; and practical guidance on design implementation.
Seismic Rehabilitation of Existing Buildings
Author: American Society of Civil Engineers
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
CLT Handbook
Author: Sylvain Gagnon
Publisher:
ISBN: 9780864885470
Category : Engineered wood construction
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780864885470
Category : Engineered wood construction
Languages : en
Pages :
Book Description