Detailed Experimental Study of Mass Transfer and Liquid Flow in a Bubble Column with Optical Measurement Techniques

Detailed Experimental Study of Mass Transfer and Liquid Flow in a Bubble Column with Optical Measurement Techniques PDF Author: Péter Miklós Kováts
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Detailed Experimental Study of Mass Transfer and Liquid Flow in a Bubble Column with Optical Measurement Techniques

Detailed Experimental Study of Mass Transfer and Liquid Flow in a Bubble Column with Optical Measurement Techniques PDF Author: Péter Miklós Kováts
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Bubbly Flows

Bubbly Flows PDF Author: Martin Sommerfeld
Publisher: Springer Science & Business Media
ISBN: 3642185401
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.

Reactive Bubbly Flows

Reactive Bubbly Flows PDF Author: Michael Schlüter
Publisher: Springer Nature
ISBN: 3030723615
Category : Technology & Engineering
Languages : en
Pages : 642

Get Book Here

Book Description
This book presents experimental and numerical methods that have been developed during six years of targeted research within the DFG priority program SPP 1740, elucidating the interaction between hydrodynamics, mass transfer and transport as well as chemical reactions in bubbly flows. A special feature of this book is its focus on an interdisciplinary research approach with contributions from chemistry, mathematics and engineering sciences, providing enhanced or novel experimental methods, models and numerical simulations. This book provides fundamental knowledge to students about the current state of knowledge regarding transport processes in reactive bubbly flows as well as to scientists, emphasizing pressing research questions and further current demands for fundamental research. Engineers from the chemical industries will get valuable insights into relevant gas-liquid processes and benefit from recommendations concerning the design of gas-liquid reactors and laboratory experiments for studying the performance of gas-liquid reactions in their own lab.

Particles, Bubbles & Drops

Particles, Bubbles & Drops PDF Author: Efstathios Michaelides
Publisher: World Scientific
ISBN: 9812566473
Category : Science
Languages : en
Pages : 425

Get Book Here

Book Description
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.

Experimental Study and Improvement of Mass Transfer in Vertical Bubble Columns

Experimental Study and Improvement of Mass Transfer in Vertical Bubble Columns PDF Author: Nicolas Souzy
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Bubble column are involved in many industrial fields ranging from chemical industry to mineral processing. It recently became an industrial stake for the production of micro-algae intended for medicinal use, food or energy: the oxygen and carbon dioxide concentrations can be controlled via the efficient mass transfer induced by the significant gas-liquid interfaciale area into the bubble column. Firstly, experimental closed-loop study has been carried out to simulate the passage of gas in a succession of columns in series. The associated theoretical model confirms the critical importance of the bubble diameter for mass transfer.Therefore, an innovative Micro-Bubble Generator (MBG) has been designed and tested. The prototype is able to produce micro-bubbles of average diameter Dbubble = 0.252 mm. The invention has been officially declared. The last chapter aims at improving data treatment methods for Planar Laser-Induced Fluorescence (PLIF), which enables to obtain experimentally mass transfer coefficient kl through concentration measurements. The first presented correction takes into account variations of the fluorescence extinction due to pH during the calibration step, and has been evaluated on CO2 concentration measurement in the wake of a free rising bubble. The second proposed correction should be applied when the length in the measurement region over which pH variations are observed increases: variations of the extinction coefficient will affect the local incident light intensity and therefore the measurements. The need for this correction has been illustrated on a test case in the wake of a cloud of free rising bubbles.

Hydrodynamics and Mass Transfer in Downflow Slurry Bubble Columns

Hydrodynamics and Mass Transfer in Downflow Slurry Bubble Columns PDF Author: Subrata Kumar Majumder
Publisher: CRC Press
ISBN: 1351249843
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
Slurry bubble column reactors are intensively used as a multiphase reactor in the chemical, biochemical, and petrochemical industries for carrying out reactions and mass transfer operations in which a gas, made up of one or several reactive components, comes into contact or reacts with a liquid. This volume describes the hydrodynamics of three-phase gas-liquid-solid flow in a downflow slurry bubble column. The efficiency of the downflow gas interacting system is characterized by the self-entrainment of secondary gas. The book covers the gas entrainment phenomena, gas holdup characteristics, pressure drop, gasliquid mixing characteristics, bubble size distribution, interfacial phenomena, and the mass transfer phenomena in the downflow slurry system. This volume will be useful in chemical and biochemical industries and in industrial research and development sectors, as well as in advanced education courses in this area. The book will be helpful for further understanding the multiphase behavior in gas interacting multiphase systems for research and development. The hydrodynamic and mass transfer characteristics discussed will be useful in the design and installation of the modified slurry bubble column in industry for specific applications.

Chemical Reactor Modeling

Chemical Reactor Modeling PDF Author: Hugo A. Jakobsen
Publisher: Springer Science & Business Media
ISBN: 3319050923
Category : Technology & Engineering
Languages : en
Pages : 1589

Get Book Here

Book Description
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.

An Experimental and Computational Study of Hydrodynamics and Mass Transfer in Gas-liquid Bubble Columns

An Experimental and Computational Study of Hydrodynamics and Mass Transfer in Gas-liquid Bubble Columns PDF Author: Houman Shirzadi
Publisher:
ISBN: 9783844009460
Category :
Languages : en
Pages : 104

Get Book Here

Book Description


Particles, Bubbles And Drops: Their Motion, Heat And Mass Transfer

Particles, Bubbles And Drops: Their Motion, Heat And Mass Transfer PDF Author: Stathis Efstathios E Michaelides
Publisher: World Scientific
ISBN: 9814478660
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and “thought experiments” have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way.

Hydrodynamics and Mass Transfer in Bubble Columns

Hydrodynamics and Mass Transfer in Bubble Columns PDF Author: Onkar N. Manjrekar
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 101

Get Book Here

Book Description
Bubble columns and slurry bubble columns are multiphase reactors used for a wide range of applications in the biochemical, chemical, petrochemical, and metallurgical industries. In spite of their widespread usage, the scale-up of bubble columns remains an ongoing challenge. Various scale-up approaches, based on concepts ranging from ideal mixing to complex 3-D multiphase CFD models, have been used for assessing the effect of column size and gas and liquid flow rates on column hydrodynamics and reactor performance. Among these approaches, phenomenological models based on either single-class or multi-class bubbles that were validated on cold flow systems have been successful in predicting the residence time distributions of gas and liquid in pilot-scale bubble columns (Chen et al., 2004) (Gupta, 2002). However, such models are not entirely predictive, since they are validated using columns having the same size as hot operating units. To provide better predictive capability, we need prior knowledge of local hold-up, transport coefficients, and bubble dynamics. This dissertation provides an improved understanding of the key design parameters (gas hold-up, volumetric mass transfer coefficients, gas-liquid interfacial area, and their spatial distribution) for predictive scale-up of bubble columns. In this work, a 4-point optical probe is used to estimate local gas hold-up and bubble dynamics (specific interfacial area, frequency, bubble velocity, and bubble chord-lengths) and their radial profiles in a cold-flow slurry bubble column and a bubble column photo-bioreactor. Along with local bubble dynamics, the effect of superficial gas velocity on volumetric mass transport coefficients in several sizes of bubble columns, with and without internals, and in slurry bubble columns and photo-bioreactors are studied. Key findings: In the bubbly flow regime, bubble dynamics in photo-bioreactors with suspended algae were dominated by the physicochemical properties of the liquid, as distinguished from the churn-turbulent flow regime in the slurry bubble columns, where bubble dynamics were mainly affected by turbulent intensities. In the bubbly-flow regime, volumetric mass transfer coefficients increased with an increase in superficial gas velocity. However, in the churn-turbulent flow regime, they approached a constant value with an increase in the superficial gas velocity. A new methodology was proposed to identify the flow regime from optical probe signals based on the support vector machine algorithm, which can uniquely classify flow regimes for various systems on a single flow regime map. A new model for the liquid phase mixing, that with a proper choice of the mass transfer coefficients enables a good match of the predicted and measured tracer response is described. This model provides a better prediction of volumetric mass transfer coefficients than the currently used well mixed model for the liquid phase (CSTR). The dissertation improves the fundamental understanding of the connection between bubble dynamics and mass transfer. Using the 4-point optical probe as a tool, it demonstrates a connection between bubble dynamics and volumetric mass transfer coefficients. Present work addresses the need of industries to have a method that can be used as an online process control tool to identify flow regime, this method has been tested at cold flow conditions and needs to be implemented at hot flow conditions. The parameters (radial distributions of gas hold-up, bubble velocities, and volumetric mass transfer coefficient) that are evaluated in the present work can be used to validate phenomenological models and CFD results at cold flow conditions, which can later be combined with process chemistry to accomplish scale-up (Chen et al., 2004). The open literature on multiphase reactors is mainly limited to cold flow condition, and techniques such as the optical probe need to be extended to hot flow conditions. The optical probe described here can withstand high temperature and pressure, but for hot flow conditions it requires a better binding agent to hold the probe tips together, one that will not dissolve in industrial solvents.