Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 0071735712
Category : Business & Economics
Languages : en
Pages : 61
Book Description
Here is a chapter from Design for Six Sigma Statistics, written by a Six Sigma practitioner with more than two decades of DFSS experience who provides a detailed, goal-focused roadmap. It shows you how to execute advanced mathematical procedures specifically aimed at implementing, fine-tuning, or maximizing DFSS projects to yield optimal results. For virtually every instance and situation, you are shown how to select and use appropriate mathematical methods to meet the challenges of today's engineering design for quality.
Design for Six Sigma Statistics, Chapter 9 - Detecting Changes in Nonnormal Data
Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 0071735712
Category : Business & Economics
Languages : en
Pages : 61
Book Description
Here is a chapter from Design for Six Sigma Statistics, written by a Six Sigma practitioner with more than two decades of DFSS experience who provides a detailed, goal-focused roadmap. It shows you how to execute advanced mathematical procedures specifically aimed at implementing, fine-tuning, or maximizing DFSS projects to yield optimal results. For virtually every instance and situation, you are shown how to select and use appropriate mathematical methods to meet the challenges of today's engineering design for quality.
Publisher: McGraw Hill Professional
ISBN: 0071735712
Category : Business & Economics
Languages : en
Pages : 61
Book Description
Here is a chapter from Design for Six Sigma Statistics, written by a Six Sigma practitioner with more than two decades of DFSS experience who provides a detailed, goal-focused roadmap. It shows you how to execute advanced mathematical procedures specifically aimed at implementing, fine-tuning, or maximizing DFSS projects to yield optimal results. For virtually every instance and situation, you are shown how to select and use appropriate mathematical methods to meet the challenges of today's engineering design for quality.
Design for Six Sigma Statistics
Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 0071483020
Category : Business & Economics
Languages : en
Pages : 882
Book Description
In today’s competitive environment, companies can no longer produce goods and services that are merely good with low defect levels, they have to be near-perfect. Design for Six Sigma Statistics is a rigorous mathematical roadmap to help companies reach this goal. As the sixth book in the Six Sigma operations series, this comprehensive book goes beyond an introduction to the statistical tools and methods found in most books but contains expert case studies, equations and step by step MINTAB instruction for performing: DFSS Design of Experiments, Measuring Process Capability, Statistical Tolerancing in DFSS and DFSS Techniques within the Supply Chain for Improved Results. The aim is to help you better diagnosis and root out potential problems before your product or service is even launched.
Publisher: McGraw Hill Professional
ISBN: 0071483020
Category : Business & Economics
Languages : en
Pages : 882
Book Description
In today’s competitive environment, companies can no longer produce goods and services that are merely good with low defect levels, they have to be near-perfect. Design for Six Sigma Statistics is a rigorous mathematical roadmap to help companies reach this goal. As the sixth book in the Six Sigma operations series, this comprehensive book goes beyond an introduction to the statistical tools and methods found in most books but contains expert case studies, equations and step by step MINTAB instruction for performing: DFSS Design of Experiments, Measuring Process Capability, Statistical Tolerancing in DFSS and DFSS Techniques within the Supply Chain for Improved Results. The aim is to help you better diagnosis and root out potential problems before your product or service is even launched.
Optimization and Variation Reduction in Quality
Author: Wayne A. Taylor
Publisher:
ISBN: 9780963512215
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780963512215
Category :
Languages : en
Pages : 0
Book Description
Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539
Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539
Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Introduction to Engineering Statistics and Lean Sigma
Author: Theodore T. Allen
Publisher: Springer Science & Business Media
ISBN: 1849960003
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.
Publisher: Springer Science & Business Media
ISBN: 1849960003
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.
Implementing Six Sigma
Author: Forrest W. Breyfogle, III
Publisher: John Wiley & Sons
ISBN: 0471265721
Category : Technology & Engineering
Languages : en
Pages : 1235
Book Description
Das bewährte Handbuch zum Statistiktool Six Sigma - jetzt in neuer, aktualisierter Auflage! - besprochen werden täglich benötigte Verfahren und deren Implementation - erweiterte Behandlung u.a. des Benchmarkings - mit vielen praxisnahen Übungen - enthält Pläne, Checklisten und Übersichten häufig auftretender Fehler
Publisher: John Wiley & Sons
ISBN: 0471265721
Category : Technology & Engineering
Languages : en
Pages : 1235
Book Description
Das bewährte Handbuch zum Statistiktool Six Sigma - jetzt in neuer, aktualisierter Auflage! - besprochen werden täglich benötigte Verfahren und deren Implementation - erweiterte Behandlung u.a. des Benchmarkings - mit vielen praxisnahen Übungen - enthält Pläne, Checklisten und Übersichten häufig auftretender Fehler
Simulating Data with SAS
Author: Rick Wicklin
Publisher: SAS Institute
ISBN: 1612903320
Category : Computers
Languages : en
Pages : 363
Book Description
Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.
Publisher: SAS Institute
ISBN: 1612903320
Category : Computers
Languages : en
Pages : 363
Book Description
Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.
Principal Component Analysis
Author: I.T. Jolliffe
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283
Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283
Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Clinical Anesthesia
Author: Paul G. Barash
Publisher: Lippincott Williams & Wilkins
ISBN: 9780781787635
Category : Medical
Languages : en
Pages : 1666
Book Description
The premier single-volume reference in the field of anesthesia, Clinical Anesthesia is now in its Sixth Edition, with thoroughly updated coverage, a new full-color design, and a revamped art program featuring 880 full-color illustrations. More than 80 leading experts cover every aspect of contemporary perioperative medicine in one comprehensive, clinically focused, clear, concise, and accessible volume. Two new editors, Michael Cahalan, MD and M. Christine Stock, MD, join Drs. Barash, Cullen, and Stoelting for this edition. A companion Website will offer the fully searchable text, plus access to enhanced podcasts that can be viewed on your desktop or downloaded to most Apple and BlackBerry devices.
Publisher: Lippincott Williams & Wilkins
ISBN: 9780781787635
Category : Medical
Languages : en
Pages : 1666
Book Description
The premier single-volume reference in the field of anesthesia, Clinical Anesthesia is now in its Sixth Edition, with thoroughly updated coverage, a new full-color design, and a revamped art program featuring 880 full-color illustrations. More than 80 leading experts cover every aspect of contemporary perioperative medicine in one comprehensive, clinically focused, clear, concise, and accessible volume. Two new editors, Michael Cahalan, MD and M. Christine Stock, MD, join Drs. Barash, Cullen, and Stoelting for this edition. A companion Website will offer the fully searchable text, plus access to enhanced podcasts that can be viewed on your desktop or downloaded to most Apple and BlackBerry devices.
Introduction to Statistical Quality Control
Author: Douglas C. Montgomery
Publisher: Wiley Global Education
ISBN: 1119399297
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.
Publisher: Wiley Global Education
ISBN: 1119399297
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.