Author: David S. Hardin
Publisher: Springer Science & Business Media
ISBN: 1441915397
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
Design and Verification of Microprocessor Systems for High-Assurance Applications
Author: David S. Hardin
Publisher: Springer Science & Business Media
ISBN: 1441915397
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
Publisher: Springer Science & Business Media
ISBN: 1441915397
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
Certified Programs and Proofs
Author: Georges Gonthier
Publisher: Springer
ISBN: 3319035452
Category : Computers
Languages : en
Pages : 318
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Certified Programs and Proofs, CPP 2013, colocated with APLAS 2013 held in Melbourne, Australia, in December 2013. The 18 revised regular papers presented together with 1 invited lecture were carefully reviewed and selected from 39 submissions. The papers are organized in topical sections on code verification, elegant proofs, proof libraries, certified transformations and security.
Publisher: Springer
ISBN: 3319035452
Category : Computers
Languages : en
Pages : 318
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Certified Programs and Proofs, CPP 2013, colocated with APLAS 2013 held in Melbourne, Australia, in December 2013. The 18 revised regular papers presented together with 1 invited lecture were carefully reviewed and selected from 39 submissions. The papers are organized in topical sections on code verification, elegant proofs, proof libraries, certified transformations and security.
Certified Programs and Proofs
Author: Chris Hawblitzel
Publisher: Springer
ISBN: 3642353088
Category : Computers
Languages : en
Pages : 314
Book Description
This book constitutes the refereed proceedings of the Second International Conference on Certified Programs and Proofs, CPP 2012, held in Kyoto, Japan, in December 2012. The 18 revised regular papers presented were carefully reviewed and selected from 37 submissions. They deal with those topics in computer science and mathematics in which certification via formal techniques is crucial.
Publisher: Springer
ISBN: 3642353088
Category : Computers
Languages : en
Pages : 314
Book Description
This book constitutes the refereed proceedings of the Second International Conference on Certified Programs and Proofs, CPP 2012, held in Kyoto, Japan, in December 2012. The 18 revised regular papers presented were carefully reviewed and selected from 37 submissions. They deal with those topics in computer science and mathematics in which certification via formal techniques is crucial.
Interactive Theorem Proving
Author: Marko Van Eekelen
Publisher: Springer Science & Business Media
ISBN: 3642228623
Category : Computers
Languages : en
Pages : 394
Book Description
This book constitutes the refereed proceedings of the Second International Conference on Interactive Theorem proving, ITP 2011, held in Berg en Dal, The Netherlands, in August 2011. The 25 revised full papers presented were carefully reviewed and selected from 50 submissions. Among the topics covered are counterexample generation, verification, validation, term rewriting, theorem proving, computability theory, translations from one formalism to another, and cooperation between tools. Several verification case studies were presented, with applications to computational geometry, unification, real analysis, etc.
Publisher: Springer Science & Business Media
ISBN: 3642228623
Category : Computers
Languages : en
Pages : 394
Book Description
This book constitutes the refereed proceedings of the Second International Conference on Interactive Theorem proving, ITP 2011, held in Berg en Dal, The Netherlands, in August 2011. The 25 revised full papers presented were carefully reviewed and selected from 50 submissions. Among the topics covered are counterexample generation, verification, validation, term rewriting, theorem proving, computability theory, translations from one formalism to another, and cooperation between tools. Several verification case studies were presented, with applications to computational geometry, unification, real analysis, etc.
Provably Correct Systems
Author: Mike Hinchey
Publisher: Springer
ISBN: 3319486284
Category : Mathematics
Languages : en
Pages : 332
Book Description
As computers increasingly control the systems and services we depend upon within our daily lives like transport, communications, and the media, ensuring these systems function correctly is of utmost importance. This book consists of twelve chapters and one historical account that were presented at a workshop in London in 2015, marking the 25th anniversary of the European ESPRIT Basic Research project ‘ProCoS’ (Provably Correct Systems). The ProCoS I and II projects pioneered and accelerated the automation of verification techniques, resulting in a wide range of applications within many trades and sectors such as aerospace, electronics, communications, and retail. The following topics are covered: An historical account of the ProCoS project Hybrid Systems Correctness of Concurrent Algorithms Interfaces and Linking Automatic Verification Run-time Assertions Checking Formal and Semi-Formal Methods Provably Correct Systems provides researchers, designers and engineers with a complete overview of the ProCoS initiative, past and present, and explores current developments and perspectives within the field.
Publisher: Springer
ISBN: 3319486284
Category : Mathematics
Languages : en
Pages : 332
Book Description
As computers increasingly control the systems and services we depend upon within our daily lives like transport, communications, and the media, ensuring these systems function correctly is of utmost importance. This book consists of twelve chapters and one historical account that were presented at a workshop in London in 2015, marking the 25th anniversary of the European ESPRIT Basic Research project ‘ProCoS’ (Provably Correct Systems). The ProCoS I and II projects pioneered and accelerated the automation of verification techniques, resulting in a wide range of applications within many trades and sectors such as aerospace, electronics, communications, and retail. The following topics are covered: An historical account of the ProCoS project Hybrid Systems Correctness of Concurrent Algorithms Interfaces and Linking Automatic Verification Run-time Assertions Checking Formal and Semi-Formal Methods Provably Correct Systems provides researchers, designers and engineers with a complete overview of the ProCoS initiative, past and present, and explores current developments and perspectives within the field.
Model Checking Software
Author: Owolabi Legunsen
Publisher: Springer Nature
ISBN: 3031150775
Category : Computers
Languages : en
Pages : 162
Book Description
This book constitutes the refereed proceedings of the 28th International Symposium on Model Checking Software, SPIN 2022, held virtually in May 2022. The 8 full papers were carefully reviewed and selected from 11 submissions. Topics covered include formal verification techniques for automated analysis of software; formal analysis for modeling languages, such as UML/state charts; formal specification languages, temporal logic, design-by-contract; model checking, automated theorem proving, including SAT and SMT; verifying compilers; abstraction and symbolic execution techniques; and much more.
Publisher: Springer Nature
ISBN: 3031150775
Category : Computers
Languages : en
Pages : 162
Book Description
This book constitutes the refereed proceedings of the 28th International Symposium on Model Checking Software, SPIN 2022, held virtually in May 2022. The 8 full papers were carefully reviewed and selected from 11 submissions. Topics covered include formal verification techniques for automated analysis of software; formal analysis for modeling languages, such as UML/state charts; formal specification languages, temporal logic, design-by-contract; model checking, automated theorem proving, including SAT and SMT; verifying compilers; abstraction and symbolic execution techniques; and much more.
Tools and Algorithms for the Construction and Analysis of Systems
Author: Bernd Finkbeiner
Publisher: Springer Nature
ISBN: 3031572467
Category :
Languages : en
Pages : 413
Book Description
Publisher: Springer Nature
ISBN: 3031572467
Category :
Languages : en
Pages : 413
Book Description
Interactive Theorem Proving
Author: Gerwin Klein
Publisher: Springer
ISBN: 3319089706
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book constitutes the proceedings of the 5th International Conference on Interactive Theorem Proving, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, in Vienna, Austria, in July 2014. The 35 papers presented in this volume were carefully reviewed and selected from 59 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization of mathematics.
Publisher: Springer
ISBN: 3319089706
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book constitutes the proceedings of the 5th International Conference on Interactive Theorem Proving, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, in Vienna, Austria, in July 2014. The 35 papers presented in this volume were carefully reviewed and selected from 59 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization of mathematics.
Handbook of Model Checking
Author: Edmund M. Clarke
Publisher: Springer
ISBN: 3319105752
Category : Computers
Languages : en
Pages : 1210
Book Description
Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. The editors and authors of this handbook are among the world's leading researchers in this domain, and the 32 contributed chapters present a thorough view of the origin, theory, and application of model checking. In particular, the editors classify the advances in this domain and the chapters of the handbook in terms of two recurrent themes that have driven much of the research agenda: the algorithmic challenge, that is, designing model-checking algorithms that scale to real-life problems; and the modeling challenge, that is, extending the formalism beyond Kripke structures and temporal logic. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.
Publisher: Springer
ISBN: 3319105752
Category : Computers
Languages : en
Pages : 1210
Book Description
Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. The editors and authors of this handbook are among the world's leading researchers in this domain, and the 32 contributed chapters present a thorough view of the origin, theory, and application of model checking. In particular, the editors classify the advances in this domain and the chapters of the handbook in terms of two recurrent themes that have driven much of the research agenda: the algorithmic challenge, that is, designing model-checking algorithms that scale to real-life problems; and the modeling challenge, that is, extending the formalism beyond Kripke structures and temporal logic. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.
Leveraging Applications of Formal Methods, Verification and Validation. Modeling
Author: Tiziana Margaria
Publisher: Springer
ISBN: 3030034186
Category : Computers
Languages : en
Pages : 599
Book Description
The four-volume set LNCS 11244, 11245, 11246, and 11247 constitutes the refereed proceedings of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2018, held in Limassol, Cyprus, in October/November 2018. The papers presented were carefully reviewed and selected for inclusion in the proceedings. Each volume focusses on an individual topic with topical section headings within the volume: Part I, Modeling: Towards a unified view of modeling and programming; X-by-construction, STRESS 2018. Part II, Verification: A broader view on verification: from static to runtime and back; evaluating tools for software verification; statistical model checking; RERS 2018; doctoral symposium. Part III, Distributed Systems: rigorous engineering of collective adaptive systems; verification and validation of distributed systems; and cyber-physical systems engineering. Part IV, Industrial Practice: runtime verification from the theory to the industry practice; formal methods in industrial practice - bridging the gap; reliable smart contracts: state-of-the-art, applications, challenges and future directions; and industrial day.
Publisher: Springer
ISBN: 3030034186
Category : Computers
Languages : en
Pages : 599
Book Description
The four-volume set LNCS 11244, 11245, 11246, and 11247 constitutes the refereed proceedings of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2018, held in Limassol, Cyprus, in October/November 2018. The papers presented were carefully reviewed and selected for inclusion in the proceedings. Each volume focusses on an individual topic with topical section headings within the volume: Part I, Modeling: Towards a unified view of modeling and programming; X-by-construction, STRESS 2018. Part II, Verification: A broader view on verification: from static to runtime and back; evaluating tools for software verification; statistical model checking; RERS 2018; doctoral symposium. Part III, Distributed Systems: rigorous engineering of collective adaptive systems; verification and validation of distributed systems; and cyber-physical systems engineering. Part IV, Industrial Practice: runtime verification from the theory to the industry practice; formal methods in industrial practice - bridging the gap; reliable smart contracts: state-of-the-art, applications, challenges and future directions; and industrial day.