Design and Fabrication of High Speed, Long Wavelength, Semiconductor Lasers

Design and Fabrication of High Speed, Long Wavelength, Semiconductor Lasers PDF Author: John Gilmary Wasserbauer
Publisher:
ISBN:
Category :
Languages : en
Pages : 170

Get Book Here

Book Description


Design, Fabrication and Analysis of High Speed Semiconductor Lasers for Optical Communication

Design, Fabrication and Analysis of High Speed Semiconductor Lasers for Optical Communication PDF Author: Olle Kjebon
Publisher:
ISBN:
Category :
Languages : en
Pages : 35

Get Book Here

Book Description


Process Technology for Semiconductor Lasers

Process Technology for Semiconductor Lasers PDF Author: Kenichi Iga
Publisher: Springer Science & Business Media
ISBN: 3642795765
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
A description of the design principles, seen mainly from the fabrication point of view. Following a review of the historical development and of the materials used in lasing at short to long wavelengths, the book goes on to discuss the basic design principles for semiconductor-laser devices and the epitaxy for laser production. One entire chapter is devoted to the technology of liquid-phase epitaxy, while another treats vapor-phase and beam epitaxies. The whole is rounded off with mode-control techniques and an introduction to surface-emitting lasers.

Introduction to Semiconductor Lasers for Optical Communications

Introduction to Semiconductor Lasers for Optical Communications PDF Author: David J. Klotzkin
Publisher: Springer Science & Business Media
ISBN: 1461493412
Category : Technology & Engineering
Languages : en
Pages : 289

Get Book Here

Book Description
This textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication and test of these devices and have an excellent background for further study of optoelectronics. This book also: Provides a multi-faceted approach to explaining the theories behind semiconductor lasers, utilizing mathematical examples, illustrations and written theoretical presentations Offers a balance of relevant optoelectronic topics, with specific attention given to distributed feedback lasers, growth techniques and waveguide cavity design Provides a summary of every chapter, worked examples, and problems for readers to solve Incorporates and explains recent breakthroughs in laser design

Long-Wavelength Semiconductor Lasers

Long-Wavelength Semiconductor Lasers PDF Author: Govind Agrawal
Publisher: Springer
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 504

Get Book Here

Book Description
Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ILm. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8--0. 9 ILm, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage of low losses in silica fibers occurring around 1. 3 and 1. 55 ILm, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During the last five years or so, the intense development effort devoted to InGaAsP lasers has resulted in a technology mature enough that lightwave transmission systems using InGaAsP lasers are currently being deployed throughout the world. This book is intended to provide a comprehensive account of long-wave length semiconductor lasers. Particular attention is paid to InGaAsP lasers, although we also consider semiconductor lasers operating at longer wave lengths. The objective is to provide an up-to-date understanding of semicon ductor lasers while incorporating recent research results that are not yet available in the book form. Although InGaAsP lasers are often used as an example, the basic concepts discussed in this text apply to all semiconductor lasers, irrespective of their wavelengths.

Novel 1.3 Micron High Speed Directly Modulated Semiconductor Laser Device Designs and the Development of Wafer Bonding Technology for Compliant Substrate Fabrication

Novel 1.3 Micron High Speed Directly Modulated Semiconductor Laser Device Designs and the Development of Wafer Bonding Technology for Compliant Substrate Fabrication PDF Author: Joseph Greenberg
Publisher:
ISBN:
Category :
Languages : en
Pages : 334

Get Book Here

Book Description


High-Power Diode Lasers

High-Power Diode Lasers PDF Author: Roland Diehl
Publisher: Springer Science & Business Media
ISBN: 3540478523
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.

VCSELs

VCSELs PDF Author: Rainer Michalzik
Publisher: Springer
ISBN: 3642249868
Category : Science
Languages : en
Pages : 562

Get Book Here

Book Description
The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

Microcavity Semiconductor Lasers

Microcavity Semiconductor Lasers PDF Author: Yong-zhen Huang
Publisher: John Wiley & Sons
ISBN: 3527345469
Category : Technology & Engineering
Languages : en
Pages : 338

Get Book Here

Book Description
Microcavity Semiconductor Lasers Explore this thorough overview of integrable microcavity semiconductor lasers and their applications from two leading voices in the field Attracting a great deal of attention over the last decades for their promising applications in photonic integration and optical interconnects, microcavity semiconductor lasers continue to develop via advances in fundamental physics, theoretical analysis, and numerical simulations. In a new work that will be of interest to researchers and practitioners alike, Microcavity Semiconductor Lasers: Principles, Design, and Applications delivers an application-oriented and highly relevant exploration of the theory, fabrication, and applications of these practical devices. The book focuses on unidirectional emission microcavity lasers for photonic integrated circuits, including polygonal microresonators, microdisk, and microring lasers. After an introductory overview of optical microcavities for microlasers and detailed information of the lasers themselves, including mode structure control and characteristics, and lasing properties, the distinguished authors discuss fabrication and applications of different microcavity lasers. Prospects for future research and potential new applications round out the book. Readers will also benefit from the inclusion of: A thorough introduction to multilayer optical waveguides, the FDTD Method, and Padé Approximation, and deformed, chaos, and unidirectional emission microdisk lasers An exploration of mode analysis for triangle and square microresonators similar as FP Cavity Practical discussions of mode analysis and control for deformed square microlasers An examination of hexagonal microcavity lasers and polygonal microcavities, along with vertical radiation loss for 3D microcavities Perfect for laser specialists, semiconductor physicists, and solid-state physicists, Microcavity Semiconductor Lasers: Principles, Design, and Applications will also earn a place in the libraries of materials scientists and professionals working in the semiconductor and optical industries seeking a one-stop reference for integrable microcavity semiconductor lasers.

Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics PDF Author: Peter W. Epperlein
Publisher: John Wiley & Sons
ISBN: 1118481860
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.