Design and Evaluation of a Biomimetic Agonist-antagonist Active Knee Prosthesis

Design and Evaluation of a Biomimetic Agonist-antagonist Active Knee Prosthesis PDF Author: Ernesto Carlos Martinez Villalpando
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Get Book Here

Book Description
The loss of a limb is extremely debilitating. Unfortunately, today's assistive technologies are still far from providing fully functional artificial limb replacements. Although lower extremity prostheses are currently better able to give assistance than their upper-extremity counterparts, important locomotion problems still remain for leg amputees. Instability, gait asymmetry, decreased walking speeds and high metabolic energy costs are some of the main challenges requiring the development of a new kind of prosthetic device. These challenges point to the need for highly versatile, fully integrated lower-extremity powered prostheses that can replicate the biological behavior of the intact human leg. This thesis presents the design and evaluation of a novel biomimetic active knee prosthesis capable of emulating intact knee biomechanics during level-ground walking. The knee design is motivated by a mono-articular prosthetic knee model comprised of a variable damper and two series elastic clutch units spanning the knee joint. The powered knee system is comprised of two series-elastic actuators positioned in parallel in an agonist-antagonist configuration. This investigation hypothesizes that the biomimetic active-knee prosthesis, with a variable impedance control, can improve unilateral transfemoral amputee locomotion in level-ground walking, reducing the metabolic cost of walking at selfselected speeds. To evaluate this hypothesis, a preliminary study investigated the clinical impact of the active knee prosthesis on the metabolic cost of walking of four unilateral above-knee amputees. This preliminary study compared the antagonistic active knee prosthesis with subjects' prescribed knee prostheses. The subjects' prescribed prostheses encompass four of the leading prosthetic knee technologies commercially available, including passive and electronically controlled variable-damping prosthetic systems. Use of the novel biomimetic active knee prosthesis resulted in a metabolic cost reduction for all four subjects by an average of 5.8%. Kinematic and kinetic analyses indicate that the active knee can increase self-selected walking speed in addition to reducing upper body vertical displacement during walking by an average of 16%. The results of this investigation report for the first time a metabolic cost reduction when walking with a prosthetic system comprised of an electrically powered active knee and passive foot-ankle prostheses, as compared to walking with a conventional transfemoral prosthesis. With this work I aim to advance the field of biomechatronics, contributing to the development of integral assistive technologies that adapt to the needs of the physically challenged.

Design and Evaluation of a Biomimetic Agonist-antagonist Active Knee Prosthesis

Design and Evaluation of a Biomimetic Agonist-antagonist Active Knee Prosthesis PDF Author: Ernesto Carlos Martinez Villalpando
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Get Book Here

Book Description
The loss of a limb is extremely debilitating. Unfortunately, today's assistive technologies are still far from providing fully functional artificial limb replacements. Although lower extremity prostheses are currently better able to give assistance than their upper-extremity counterparts, important locomotion problems still remain for leg amputees. Instability, gait asymmetry, decreased walking speeds and high metabolic energy costs are some of the main challenges requiring the development of a new kind of prosthetic device. These challenges point to the need for highly versatile, fully integrated lower-extremity powered prostheses that can replicate the biological behavior of the intact human leg. This thesis presents the design and evaluation of a novel biomimetic active knee prosthesis capable of emulating intact knee biomechanics during level-ground walking. The knee design is motivated by a mono-articular prosthetic knee model comprised of a variable damper and two series elastic clutch units spanning the knee joint. The powered knee system is comprised of two series-elastic actuators positioned in parallel in an agonist-antagonist configuration. This investigation hypothesizes that the biomimetic active-knee prosthesis, with a variable impedance control, can improve unilateral transfemoral amputee locomotion in level-ground walking, reducing the metabolic cost of walking at selfselected speeds. To evaluate this hypothesis, a preliminary study investigated the clinical impact of the active knee prosthesis on the metabolic cost of walking of four unilateral above-knee amputees. This preliminary study compared the antagonistic active knee prosthesis with subjects' prescribed knee prostheses. The subjects' prescribed prostheses encompass four of the leading prosthetic knee technologies commercially available, including passive and electronically controlled variable-damping prosthetic systems. Use of the novel biomimetic active knee prosthesis resulted in a metabolic cost reduction for all four subjects by an average of 5.8%. Kinematic and kinetic analyses indicate that the active knee can increase self-selected walking speed in addition to reducing upper body vertical displacement during walking by an average of 16%. The results of this investigation report for the first time a metabolic cost reduction when walking with a prosthetic system comprised of an electrically powered active knee and passive foot-ankle prostheses, as compared to walking with a conventional transfemoral prosthesis. With this work I aim to advance the field of biomechatronics, contributing to the development of integral assistive technologies that adapt to the needs of the physically challenged.

Design of Test Bench Apparatus and Preliminary Weight Reduction Strategy for an Active Knee Prosthesis

Design of Test Bench Apparatus and Preliminary Weight Reduction Strategy for an Active Knee Prosthesis PDF Author: Jacky Homing Lau
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
This thesis presents the design and structural analyses of an experimental test bench for the characterization of an active biomimetic knee prosthesis currently being developed by the Biomechatronics research group at MIT Media Laboratory. Finite element analysis (FEA) is conducted to determine the maximum stress and material deflections of three principle components of the test bench and to verify their structural integrity. In addition, FEA is performed on the chassis of the active knee prosthesis when subjected to the expected loads associated with walking. The simulation results verify that the active prosthetic do not expect structural failure during level ground walking trials with above knee amputee participants. Finally, an empirical weight reduction strategy for the active knee is proposed and analyzed. This strategy aims to reduce distal leg mass which contributes to the overall energetic demands of amputee walking. FEA on the modified active knee prosthesis chassis validate the strategy modifications while maintaining the original design feature constraints.

Neuro-Robotics

Neuro-Robotics PDF Author: Panagiotis Artemiadis
Publisher: Springer
ISBN: 9401789320
Category : Medical
Languages : en
Pages : 444

Get Book Here

Book Description
Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.

Journal of Rehabilitation Research & Development

Journal of Rehabilitation Research & Development PDF Author:
Publisher:
ISBN:
Category : Disabled veterans
Languages : en
Pages : 644

Get Book Here

Book Description


Journal of Rehabilitation Research and Development

Journal of Rehabilitation Research and Development PDF Author:
Publisher:
ISBN:
Category : Disabled veterans
Languages : en
Pages : 766

Get Book Here

Book Description


Journal of Rehabilitation R & D

Journal of Rehabilitation R & D PDF Author:
Publisher:
ISBN:
Category : Prosthesis
Languages : en
Pages : 532

Get Book Here

Book Description


Wearable Robotics: Challenges and Trends

Wearable Robotics: Challenges and Trends PDF Author: Maria Chiara Carrozza
Publisher: Springer
ISBN: 3030018873
Category : Technology & Engineering
Languages : en
Pages : 545

Get Book Here

Book Description
The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 4th International Symposium on Wearable Robotics, WeRob2018, held October 16-20, 2018, in Pisa, Italy, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2018 with the International Conference on Neurorehabilitation, INCR2018. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies.

Genetic Algorithms in Applications

Genetic Algorithms in Applications PDF Author: Rustem Popa
Publisher: BoD – Books on Demand
ISBN: 9535104004
Category : Computers
Languages : en
Pages : 332

Get Book Here

Book Description
Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.

Lower-limb Prosthetics

Lower-limb Prosthetics PDF Author: Norman Berger
Publisher:
ISBN:
Category : Amputation
Languages : en
Pages : 178

Get Book Here

Book Description


Robot 2015: Second Iberian Robotics Conference

Robot 2015: Second Iberian Robotics Conference PDF Author: Luís Paulo Reis
Publisher: Springer
ISBN: 3319271490
Category : Computers
Languages : en
Pages : 760

Get Book Here

Book Description
This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other countries. The conference featured 19 special sessions, plus a main/general robotics track. The special sessions were about: Agricultural Robotics and Field Automation; Autonomous Driving and Driver Assistance Systems; Communication Aware Robotics; Environmental Robotics; Social Robotics: Intelligent and Adaptable AAL Systems; Future Industrial Robotics Systems; Legged Locomotion Robots; Rehabilitation and Assistive Robotics; Robotic Applications in Art and Architecture; Surgical Robotics; Urban Robotics; Visual Perception for Autonomous Robots; Machine Learning in Robotics; Simulation and Competitions in Robotics; Educational Robotics; Visual Maps in Robotics; Control and Planning in Aerial Robotics, the XVI edition of the Workshop on Physical Agents and a Special Session on Technological Transfer and Innovation.