Author: John Knight
Publisher: CRC Press
ISBN: 1439862559
Category : Computers
Languages : en
Pages : 438
Book Description
Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn: Why dependability matters What it means for a system to be dependable How to build a dependable software system How to assess whether a software system is adequately dependable The author focuses on the actions needed to reduce the rate of failure to an acceptable level, covering material essential for engineers developing systems with extreme consequences of failure, such as safety-critical systems, security-critical systems, and critical infrastructure systems. The text explores the systems engineering aspects of dependability and provides a framework for engineers to reason and make decisions about software and its dependability. It also offers a comprehensive approach to achieve software dependability and includes a bibliography of the most relevant literature. Emphasizing the software engineering elements of dependability, this book helps software and computer engineers in fields requiring ultra-high levels of dependability, such as avionics, medical devices, automotive electronics, weapon systems, and advanced information systems, construct software systems that are dependable and within budget and time constraints.
Fundamentals of Dependable Computing for Software Engineers
Author: John Knight
Publisher: CRC Press
ISBN: 1439862559
Category : Computers
Languages : en
Pages : 438
Book Description
Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn: Why dependability matters What it means for a system to be dependable How to build a dependable software system How to assess whether a software system is adequately dependable The author focuses on the actions needed to reduce the rate of failure to an acceptable level, covering material essential for engineers developing systems with extreme consequences of failure, such as safety-critical systems, security-critical systems, and critical infrastructure systems. The text explores the systems engineering aspects of dependability and provides a framework for engineers to reason and make decisions about software and its dependability. It also offers a comprehensive approach to achieve software dependability and includes a bibliography of the most relevant literature. Emphasizing the software engineering elements of dependability, this book helps software and computer engineers in fields requiring ultra-high levels of dependability, such as avionics, medical devices, automotive electronics, weapon systems, and advanced information systems, construct software systems that are dependable and within budget and time constraints.
Publisher: CRC Press
ISBN: 1439862559
Category : Computers
Languages : en
Pages : 438
Book Description
Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn: Why dependability matters What it means for a system to be dependable How to build a dependable software system How to assess whether a software system is adequately dependable The author focuses on the actions needed to reduce the rate of failure to an acceptable level, covering material essential for engineers developing systems with extreme consequences of failure, such as safety-critical systems, security-critical systems, and critical infrastructure systems. The text explores the systems engineering aspects of dependability and provides a framework for engineers to reason and make decisions about software and its dependability. It also offers a comprehensive approach to achieve software dependability and includes a bibliography of the most relevant literature. Emphasizing the software engineering elements of dependability, this book helps software and computer engineers in fields requiring ultra-high levels of dependability, such as avionics, medical devices, automotive electronics, weapon systems, and advanced information systems, construct software systems that are dependable and within budget and time constraints.
Dependability: Basic Concepts and Terminology
Author: Jean-Claude Laprie
Publisher: Springer
ISBN: 370919170X
Category : Computers
Languages : en
Pages : 268
Book Description
Publisher: Springer
ISBN: 370919170X
Category : Computers
Languages : en
Pages : 268
Book Description
Foundations of Dependable Computing
Author: Gary M. Koob
Publisher: Springer Science & Business Media
ISBN: 0792394860
Category : Computers
Languages : en
Pages : 325
Book Description
Foundations of Dependable Computing: System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead. A companion to this volume (published by Kluwer) subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems.
Publisher: Springer Science & Business Media
ISBN: 0792394860
Category : Computers
Languages : en
Pages : 325
Book Description
Foundations of Dependable Computing: System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead. A companion to this volume (published by Kluwer) subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems.
Design of Dependable Computing Systems
Author: J.C. Geffroy
Publisher: Springer
ISBN: 9789048159413
Category : Computers
Languages : en
Pages : 0
Book Description
This book analyzes the causes of failures in computing systems, their consequences, as weIl as the existing solutions to manage them. The domain is tackled in a progressive and educational manner with two objectives: 1. The mastering of the basics of dependability domain at system level, that is to say independently ofthe technology used (hardware or software) and of the domain of application. 2. The understanding of the fundamental techniques available to prevent, to remove, to tolerate, and to forecast faults in hardware and software technologies. The first objective leads to the presentation of the general problem, the fault models and degradation mechanisms wh ich are at the origin of the failures, and finally the methods and techniques which permit the faults to be prevented, removed or tolerated. This study concerns logical systems in general, independently of the hardware and software technologies put in place. This knowledge is indispensable for two reasons: • A large part of a product' s development is independent of the technological means (expression of requirements, specification and most of the design stage). Very often, the development team does not possess this basic knowledge; hence, the dependability requirements are considered uniquely during the technological implementation. Such an approach is expensive and inefficient. Indeed, the removal of a preliminary design fault can be very difficult (if possible) if this fault is detected during the product's final testing.
Publisher: Springer
ISBN: 9789048159413
Category : Computers
Languages : en
Pages : 0
Book Description
This book analyzes the causes of failures in computing systems, their consequences, as weIl as the existing solutions to manage them. The domain is tackled in a progressive and educational manner with two objectives: 1. The mastering of the basics of dependability domain at system level, that is to say independently ofthe technology used (hardware or software) and of the domain of application. 2. The understanding of the fundamental techniques available to prevent, to remove, to tolerate, and to forecast faults in hardware and software technologies. The first objective leads to the presentation of the general problem, the fault models and degradation mechanisms wh ich are at the origin of the failures, and finally the methods and techniques which permit the faults to be prevented, removed or tolerated. This study concerns logical systems in general, independently of the hardware and software technologies put in place. This knowledge is indispensable for two reasons: • A large part of a product' s development is independent of the technological means (expression of requirements, specification and most of the design stage). Very often, the development team does not possess this basic knowledge; hence, the dependability requirements are considered uniquely during the technological implementation. Such an approach is expensive and inefficient. Indeed, the removal of a preliminary design fault can be very difficult (if possible) if this fault is detected during the product's final testing.
Fundamentals of Dependable Computing for Software Engineers
Author: John Knight
Publisher: CRC Press
ISBN: 1439862567
Category : Computers
Languages : en
Pages : 427
Book Description
Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn:Why dependability mattersWhat it means for a
Publisher: CRC Press
ISBN: 1439862567
Category : Computers
Languages : en
Pages : 427
Book Description
Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn:Why dependability mattersWhat it means for a
Delta-4: A Generic Architecture for Dependable Distributed Computing
Author: David Powell
Publisher: Springer Science & Business Media
ISBN: 3642846963
Category : Computers
Languages : en
Pages : 477
Book Description
Delta-4 is a 5-nation, 13-partner project that has been investigating the achievement of dependability in open distributed systems, including real-time systems. This book describes the design and validation of the distributed fault-tolerant architecture developed within this project. The key features of the Delta-4 architecture are: (a) a distributed object-oriented application support environment; (b) built-in support for user-transparent fault tolerance; (c) use of multicast or group communication protocols; and (d) use of standard off the-shelf processors and standard local area network technology with minimum specialized hardware. The book is organized as follows: The first 3 chapters give an overview of the architecture's objectives and of the architecture itself, and compare the proposed solutions with other approaches. Chapters 4 to 12 give a more detailed insight into the Delta-4 architectural concepts. Chapters 4 and 5 are devoted to providing a firm set of general concepts and terminology regarding dependable and real-time computing. Chapter 6 is centred on fault-tolerance techniques based on distribution. The description of the architecture itself commences with a description of the Delta-4 application support environment (Deltase) in chapter 7. Two variants of the architecture - the Delta-4 Open System Architecture (OSA) and the Delta-4 Extra Performance Architecture (XPA) - are described respectively in chapters 8 and 9. Both variants of the architecture have a common underlying basis for dependable multicasting, i. e.
Publisher: Springer Science & Business Media
ISBN: 3642846963
Category : Computers
Languages : en
Pages : 477
Book Description
Delta-4 is a 5-nation, 13-partner project that has been investigating the achievement of dependability in open distributed systems, including real-time systems. This book describes the design and validation of the distributed fault-tolerant architecture developed within this project. The key features of the Delta-4 architecture are: (a) a distributed object-oriented application support environment; (b) built-in support for user-transparent fault tolerance; (c) use of multicast or group communication protocols; and (d) use of standard off the-shelf processors and standard local area network technology with minimum specialized hardware. The book is organized as follows: The first 3 chapters give an overview of the architecture's objectives and of the architecture itself, and compare the proposed solutions with other approaches. Chapters 4 to 12 give a more detailed insight into the Delta-4 architectural concepts. Chapters 4 and 5 are devoted to providing a firm set of general concepts and terminology regarding dependable and real-time computing. Chapter 6 is centred on fault-tolerance techniques based on distribution. The description of the architecture itself commences with a description of the Delta-4 application support environment (Deltase) in chapter 7. Two variants of the architecture - the Delta-4 Open System Architecture (OSA) and the Delta-4 Extra Performance Architecture (XPA) - are described respectively in chapters 8 and 9. Both variants of the architecture have a common underlying basis for dependable multicasting, i. e.
Dependable Embedded Systems
Author: Jörg Henkel
Publisher: Springer Nature
ISBN: 303052017X
Category : Technology & Engineering
Languages : en
Pages : 606
Book Description
This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.
Publisher: Springer Nature
ISBN: 303052017X
Category : Technology & Engineering
Languages : en
Pages : 606
Book Description
This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.
Dependable Computing - EDCC 2005
Author: Mario Dal Cin
Publisher: Springer Science & Business Media
ISBN: 3540257233
Category : Computers
Languages : en
Pages : 488
Book Description
This book constitutes the refereed proceedings of the 5th European Dependable Computing Conference, EDCC 2005, held in Budapest, Hungary in April 2005. The 21 revised full papers, 5 revised practical experience reports, and 4 prototype description papers presented together with the abstract of a keynote and 2 fast-track papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on distributed algorithms, fault-tolerant design and procotols, practical experience reports and tools, assessment and analysis, measurement, hardware verification, dependable networking, and reliability engineering and testing.
Publisher: Springer Science & Business Media
ISBN: 3540257233
Category : Computers
Languages : en
Pages : 488
Book Description
This book constitutes the refereed proceedings of the 5th European Dependable Computing Conference, EDCC 2005, held in Budapest, Hungary in April 2005. The 21 revised full papers, 5 revised practical experience reports, and 4 prototype description papers presented together with the abstract of a keynote and 2 fast-track papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on distributed algorithms, fault-tolerant design and procotols, practical experience reports and tools, assessment and analysis, measurement, hardware verification, dependable networking, and reliability engineering and testing.
Building Dependable Distributed Systems
Author: Wenbing Zhao
Publisher: John Wiley & Sons
ISBN: 1118912632
Category : Computers
Languages : en
Pages : 246
Book Description
A one-volume guide to the most essential techniques for designing and building dependable distributed systems Instead of covering a broad range of research works for each dependability strategy, this useful reference focuses on only a selected few (usually the most seminal works, the most practical approaches, or the first publication of each approach), explaining each in depth, usually with a comprehensive set of examples. Each technique is dissected thoroughly enough so that readers who are not familiar with dependable distributed computing can actually grasp the technique after studying the book. Building Dependable Distributed Systems consists of eight chapters. The first introduces the basic concepts and terminology of dependable distributed computing, and also provides an overview of the primary means of achieving dependability. Checkpointing and logging mechanisms, which are the most commonly used means of achieving limited degree of fault tolerance, are described in the second chapter. Works on recovery-oriented computing, focusing on the practical techniques that reduce the fault detection and recovery times for Internet-based applications, are covered in chapter three. Chapter four outlines the replication techniques for data and service fault tolerance. This chapter also pays particular attention to optimistic replication and the CAP theorem. Chapter five explains a few seminal works on group communication systems. Chapter six introduces the distributed consensus problem and covers a number of Paxos family algorithms in depth. The Byzantine generals problem and its latest solutions, including the seminal Practical Byzantine Fault Tolerance (PBFT) algorithm and a number of its derivatives, are introduced in chapter seven. The final chapter details the latest research results surrounding application-aware Byzantine fault tolerance, which represents an important step forward in the practical use of Byzantine fault tolerance techniques.
Publisher: John Wiley & Sons
ISBN: 1118912632
Category : Computers
Languages : en
Pages : 246
Book Description
A one-volume guide to the most essential techniques for designing and building dependable distributed systems Instead of covering a broad range of research works for each dependability strategy, this useful reference focuses on only a selected few (usually the most seminal works, the most practical approaches, or the first publication of each approach), explaining each in depth, usually with a comprehensive set of examples. Each technique is dissected thoroughly enough so that readers who are not familiar with dependable distributed computing can actually grasp the technique after studying the book. Building Dependable Distributed Systems consists of eight chapters. The first introduces the basic concepts and terminology of dependable distributed computing, and also provides an overview of the primary means of achieving dependability. Checkpointing and logging mechanisms, which are the most commonly used means of achieving limited degree of fault tolerance, are described in the second chapter. Works on recovery-oriented computing, focusing on the practical techniques that reduce the fault detection and recovery times for Internet-based applications, are covered in chapter three. Chapter four outlines the replication techniques for data and service fault tolerance. This chapter also pays particular attention to optimistic replication and the CAP theorem. Chapter five explains a few seminal works on group communication systems. Chapter six introduces the distributed consensus problem and covers a number of Paxos family algorithms in depth. The Byzantine generals problem and its latest solutions, including the seminal Practical Byzantine Fault Tolerance (PBFT) algorithm and a number of its derivatives, are introduced in chapter seven. The final chapter details the latest research results surrounding application-aware Byzantine fault tolerance, which represents an important step forward in the practical use of Byzantine fault tolerance techniques.
Mechanizing Proof
Author: Donald MacKenzie
Publisher: MIT Press
ISBN: 9780262632959
Category : Social Science
Languages : en
Pages : 448
Book Description
Most aspects of our private and social lives—our safety, the integrity of the financial system, the functioning of utilities and other services, and national security—now depend on computing. But how can we know that this computing is trustworthy? In Mechanizing Proof, Donald MacKenzie addresses this key issue by investigating the interrelations of computing, risk, and mathematical proof over the last half century from the perspectives of history and sociology. His discussion draws on the technical literature of computer science and artificial intelligence and on extensive interviews with participants. MacKenzie argues that our culture now contains two ideals of proof: proof as traditionally conducted by human mathematicians, and formal, mechanized proof. He describes the systems constructed by those committed to the latter ideal and the many questions those systems raise about the nature of proof. He looks at the primary social influence on the development of automated proof—the need to predict the behavior of the computer systems upon which human life and security depend—and explores the involvement of powerful organizations such as the National Security Agency. He concludes that in mechanizing proof, and in pursuing dependable computer systems, we do not obviate the need for trust in our collective human judgment.
Publisher: MIT Press
ISBN: 9780262632959
Category : Social Science
Languages : en
Pages : 448
Book Description
Most aspects of our private and social lives—our safety, the integrity of the financial system, the functioning of utilities and other services, and national security—now depend on computing. But how can we know that this computing is trustworthy? In Mechanizing Proof, Donald MacKenzie addresses this key issue by investigating the interrelations of computing, risk, and mathematical proof over the last half century from the perspectives of history and sociology. His discussion draws on the technical literature of computer science and artificial intelligence and on extensive interviews with participants. MacKenzie argues that our culture now contains two ideals of proof: proof as traditionally conducted by human mathematicians, and formal, mechanized proof. He describes the systems constructed by those committed to the latter ideal and the many questions those systems raise about the nature of proof. He looks at the primary social influence on the development of automated proof—the need to predict the behavior of the computer systems upon which human life and security depend—and explores the involvement of powerful organizations such as the National Security Agency. He concludes that in mechanizing proof, and in pursuing dependable computer systems, we do not obviate the need for trust in our collective human judgment.