Defect and Microstructure Analysis by Diffraction

Defect and Microstructure Analysis by Diffraction PDF Author: Robert L. Snyder
Publisher: International Union of Crystal
ISBN: 9780198501893
Category : Science
Languages : en
Pages : 785

Get Book Here

Book Description
Defect and Microstructure Analysis by Diffraction is focused on extracting information on the real structure of materials from their diffraction patterns. The primary features of a powder diffraction pattern are determined by the "idealized" periodic nature of the crystal structure. With theadvent of computer automation the techniques for carrying out qualitative, quantitative and structure analysis based on the primary pattern features rapidly matured. In general, the deviations of a particular specimen, from the ideal or perfect crystal structure, cause diffraction peak profiles tobroaden and sometimes to become asymmetric. Thus, information on the real structure or microstructure of a specimen can be obtained from a careful study of the diffraction line profiles. The evolving techniques for microstructure analysis from diffraction patterns such as micro-strain, crystallitesize, macro-strain and preferred orientation analysis require an ever more detailed understanding of the effects of crystallographic mistakes on peak assymmetry and the effect of the distribution of small crystallites on the tails of diffraction peaks. This book provides a comprehensive analysis ofthe fundamental theory and techniques for microstructure analysis from diffraction patterns and summarizes the current state of the art. This complete survey lays the foundation for the next and last major development in this field: the extraction of the full information in a powder pattern by thesimulation of the full experimental pattern. The goal of this branch of science is to extract all of the information locked in the powder diffraction pattern including: the types and densities of stacking faults, the strain field produced by each, the anisotropic crystallite size and orientation,along with the size and strain distributions of each phase in a specimen. This book provides a complete summary of the developments of the twentieth century and points the way.

Defect and Microstructure Analysis by Diffraction

Defect and Microstructure Analysis by Diffraction PDF Author: Robert L. Snyder
Publisher: International Union of Crystal
ISBN: 9780198501893
Category : Science
Languages : en
Pages : 785

Get Book Here

Book Description
Defect and Microstructure Analysis by Diffraction is focused on extracting information on the real structure of materials from their diffraction patterns. The primary features of a powder diffraction pattern are determined by the "idealized" periodic nature of the crystal structure. With theadvent of computer automation the techniques for carrying out qualitative, quantitative and structure analysis based on the primary pattern features rapidly matured. In general, the deviations of a particular specimen, from the ideal or perfect crystal structure, cause diffraction peak profiles tobroaden and sometimes to become asymmetric. Thus, information on the real structure or microstructure of a specimen can be obtained from a careful study of the diffraction line profiles. The evolving techniques for microstructure analysis from diffraction patterns such as micro-strain, crystallitesize, macro-strain and preferred orientation analysis require an ever more detailed understanding of the effects of crystallographic mistakes on peak assymmetry and the effect of the distribution of small crystallites on the tails of diffraction peaks. This book provides a comprehensive analysis ofthe fundamental theory and techniques for microstructure analysis from diffraction patterns and summarizes the current state of the art. This complete survey lays the foundation for the next and last major development in this field: the extraction of the full information in a powder pattern by thesimulation of the full experimental pattern. The goal of this branch of science is to extract all of the information locked in the powder diffraction pattern including: the types and densities of stacking faults, the strain field produced by each, the anisotropic crystallite size and orientation,along with the size and strain distributions of each phase in a specimen. This book provides a complete summary of the developments of the twentieth century and points the way.

Diffraction Analysis of the Microstructure of Materials

Diffraction Analysis of the Microstructure of Materials PDF Author: Eric J. Mittemeijer
Publisher: Springer Science & Business Media
ISBN: 3662067234
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

Applied Crystallography

Applied Crystallography PDF Author: Henryk Morawiec
Publisher: World Scientific
ISBN: 9810246137
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
This proceedings volume contains research data from structural investigation of materials of high industrial value.

X-Ray Line Profile Analysis in Materials Science

X-Ray Line Profile Analysis in Materials Science PDF Author: Gubicza, Jen?
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.

Applied Crystallography, Proceedings Of The Xix Conference

Applied Crystallography, Proceedings Of The Xix Conference PDF Author: Danuta Stroz
Publisher: World Scientific
ISBN: 9814483214
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description
This book aims to propagate the newest achievements of applied crystallography among crystallographers, solid state physicists and materials scientists. It presents application of structural studies to materials used in industrial practice rather than those associated with the crystal structure determination only.The proceedings have been selected for coverage in:• Materials Science Citation Index®• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences

APPLIED CRYSTALLOGRAPHY XX

APPLIED CRYSTALLOGRAPHY XX PDF Author: Danuta Stróż
Publisher: Trans Tech Publications Ltd
ISBN: 3038131431
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
Proceedings of the XX Conference on APPLIED CRYSTALLOGRAPHY, 11-14 September 2006 - Wisła, Poland

Metal Oxide Nanoparticles, 2 Volume Set

Metal Oxide Nanoparticles, 2 Volume Set PDF Author: Oliver Diwald
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : en
Pages : 903

Get Book Here

Book Description
Ein umfassendes Referenzwerk für Chemiker und Industriefachleute zum Thema Nanopartikel Nanopartikel aus Metalloxid sind ein wesentlicher Bestandteil zahlreicher natürlicher und technologischer Prozesse ? von der Mineralumwandlung bis zur Elektronik. Darüber hinaus kommen Metalloxid-Nanopartikel in Pulverform im Maschinenbau, in der Elektronik und der Energietechnik zum Einsatz. Das Werk Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces stellt die wichtigsten Synthese- und Formulierungsansätze bei der Nutzung von Metalloxid-Nanopartikeln als Funktionsmaterialien vor. Es werden die üblichen Verarbeitungswege erklärt und die physikalischen und chemischen Eigenschaften der Partikel mithilfe von umfassenden und ergänzenden Charakterisierungsmethoden bewertet. Dieses Werk kann als Einführung in die Formulierung von Nanopartikeln, ihre Grenzflächenchemie und ihre funktionellen Eigenschaften im Nanobereich genutzt werden. Darüber hinaus dient es zum vertiefenden Verständnis, denn das Buch enthält detaillierte Angaben zu fortschrittlichen Methoden bei der physikalischen, chemischen, Oberflächen- und Grenzflächencharakterisierung von Metalloxid-Nanopartikeln in Pulvern und Dispersionen. *Erläuterung der Anwendung von Metalloxid-Nanopartikeln und der wirtschaftlichen Auswirkungen *Betrachtung der Partikelsynthese, einschließlich der Grundsätze ausgewählter Bottom-up-Strategien *Untersuchung der Formulierung von Nanopartikeln mit einer Auswahl von Verarbeitungs- und Anwendungswegen *Diskussion der Bedeutung von Partikeloberflächen und -grenzflächen für Strukturbildung, Stabilität und funktionelle Materialeigenschaften *Betrachtung der Charakterisierung von Metalloxid-Nanopartikeln auf verschiedenen Längenskalen In diesem Buch finden Forscher im akademischen Bereich, Chemiker in der Industrie und Doktoranden wichtige Erkenntnisse über die Synthese, Eigenschaften und Anwendungen von Metalloxid-Nanopartikeln.

Understanding Drug Release and Absorption Mechanisms

Understanding Drug Release and Absorption Mechanisms PDF Author: Mario Grassi
Publisher: CRC Press
ISBN: 1420004654
Category : Medical
Languages : en
Pages : 648

Get Book Here

Book Description
Demand for better reliability from drug delivery systems has caused designers and researchers to move away from trial-and-error approaches and toward model-based methods of product development. Developing such models requires cross-disciplinary physical, mathematical, and physiological knowledge. Combining these areas under a single cover, Under

Crystals, Defects and Microstructures

Crystals, Defects and Microstructures PDF Author: Rob Phillips
Publisher: Cambridge University Press
ISBN: 0521790050
Category : Mathematics
Languages : en
Pages : 807

Get Book Here

Book Description
Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.

Defect Structure and Properties of Nanomaterials

Defect Structure and Properties of Nanomaterials PDF Author: J Gubicza
Publisher: Woodhead Publishing
ISBN: 0081019181
Category : Technology & Engineering
Languages : en
Pages : 412

Get Book Here

Book Description
Defect Structure and Properties of Nanomaterials: Second and Extended Edition covers a wide range of nanomaterials including metals, alloys, ceramics, diamond, carbon nanotubes, and their composites. This new edition is fully revised and updated, covering important advances that have taken place in recent years. Nanostructured materials exhibit unique mechanical and physical properties compared with their coarse-grained counterparts, therefore these materials are currently a major focus in materials science. The production methods of nanomaterials affect the lattice defect structure (vacancies, dislocations, disclinations, stacking faults, twins, and grain boundaries) that has a major influence on their mechanical and physical properties. In this book, the production routes of nanomaterials are described in detail, and the relationships between the processing conditions and the resultant defect structure, as well as the defect-related properties (e.g. mechanical behavior, electrical resistance, diffusion, corrosion resistance, thermal stability, hydrogen storage capability, etc.) are reviewed. In particular, new processing methods of nanomaterials are described in the chapter dealing with the manufacturing procedures of nanostructured materials. New chapters on (i) the experimental methods for the study of lattice defects, (ii) the defect structure in nanodisperse particles, and (iii) the influence of lattice defects on electrical, corrosion, and diffusion properties are included, to further enhance what has become a leading reference for engineering, physics, and materials science audiences. - Provides a detailed overview of processing methods, defect structure, and defect-related mechanical and physical properties of nanomaterials - Covers a wide range of nanomaterials including metals, alloys, ceramics, diamond, carbon nanotubes, and their composites - Includes new chapters covering recent advances in both processing techniques and methods for the study of lattice defects - Provides valuable information that will help materials scientists and engineers highlight lattice defects and the related mechanical and physical properties