Defect and Material Mechanics

Defect and Material Mechanics PDF Author: C. Dascalu
Publisher: Springer Science & Business Media
ISBN: 1402069294
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This volume presents recent developments in the theory of defects and the mechanics of material forces. Most of the contributions were presented at the International Symposium on Defect and Material Forces (ISDMM2007), held in Aussois, France, March 2007.

Defect and Material Mechanics

Defect and Material Mechanics PDF Author: C. Dascalu
Publisher: Springer Science & Business Media
ISBN: 1402069294
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This volume presents recent developments in the theory of defects and the mechanics of material forces. Most of the contributions were presented at the International Symposium on Defect and Material Forces (ISDMM2007), held in Aussois, France, March 2007.

Mechanics in Material Space

Mechanics in Material Space PDF Author: Reinhold Kienzler
Publisher: Springer Science & Business Media
ISBN: 3642570100
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
A novel and unified presentation of the elements of mechanics in material space or configurational mechanics, with applications to fracture and defect mechanics. The level is kept accessible for any engineer, scientist or graduate possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.

Micromechanics of Defects in Solids

Micromechanics of Defects in Solids PDF Author: T. Mura
Publisher: Springer Science & Business Media
ISBN: 9400934890
Category : Science
Languages : en
Pages : 601

Get Book Here

Book Description
This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.

Elements of Structures and Defects of Crystalline Materials

Elements of Structures and Defects of Crystalline Materials PDF Author: Tsang-Tse Fang
Publisher: Elsevier
ISBN: 0128142693
Category : Technology & Engineering
Languages : en
Pages : 233

Get Book Here

Book Description
Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids

Uncertainty Quantification of Stochastic Defects in Materials

Uncertainty Quantification of Stochastic Defects in Materials PDF Author: Liu Chu
Publisher: CRC Press
ISBN: 1000506096
Category : Technology & Engineering
Languages : en
Pages : 179

Get Book Here

Book Description
Uncertainty Quantification of Stochastic Defects in Materials investigates the uncertainty quantification methods for stochastic defects in material microstructures. It provides effective supplementary approaches for conventional experimental observation with the consideration of stochastic factors and uncertainty propagation. Pursuing a comprehensive numerical analytical system, this book establishes a fundamental framework for this topic, while emphasizing the importance of stochastic and uncertainty quantification analysis and the significant influence of microstructure defects on the material macro properties. Key Features Consists of two parts: one exploring methods and theories and the other detailing related examples Defines stochastic defects in materials and presents the uncertainty quantification for defect location, size, geometrical configuration, and instability Introduces general Monte Carlo methods, polynomial chaos expansion, stochastic finite element methods, and machine learning methods Provides a variety of examples to support the introduced methods and theories Applicable to MATLABĀ® and ANSYS software This book is intended for advanced students interested in material defect quantification methods and material reliability assessment, researchers investigating artificial material microstructure optimization, and engineers working on defect influence analysis and nondestructive defect testing.

Defects and Damage in Composite Materials and Structures

Defects and Damage in Composite Materials and Structures PDF Author: Rikard Benton Heslehurst
Publisher: CRC Press
ISBN: 146658047X
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.

Configurational Mechanics of Materials

Configurational Mechanics of Materials PDF Author: Reinhold Kienzler
Publisher: Springer
ISBN: 3709125766
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
These lecture notes cover numerous elements of configurational mechanics, including mathematical foundations, linear and nonlinear elasticity and continuum mechanics, coupled fields, fracture mechanics, as well as strength of materials.

Nonlinear Mechanics of Crystals

Nonlinear Mechanics of Crystals PDF Author: John D. Clayton
Publisher: Springer Science & Business Media
ISBN: 9400703503
Category : Science
Languages : en
Pages : 709

Get Book Here

Book Description
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations. Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals. This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.

Collected Works of J. D. Eshelby

Collected Works of J. D. Eshelby PDF Author: Xanthippi Markenscoff
Publisher: Solid Mechanics and Its Applications
ISBN:
Category : Mathematics
Languages : en
Pages : 988

Get Book Here

Book Description
J.D. Eshelby's work shaped the fields of defect mechanics and micromechanics of inhomogeneous solids for fifty years, providing the basis for quantitative analysis of the controlling mechanisms of plastic deformation and fracture. This volume presents the Collected Works of Eshelby unabridged, with forewords by D.M. Barnett (Stanford Univ.), B. Bilby (Sheffield), J.R. Rice (Harvard Univ.), A. Seeger (Stuttgart), and J.R. Willis (Cambridge Univ.) on the impact of Eshelby's work on theirs.

Patterns, Defects and Materials Instabilities

Patterns, Defects and Materials Instabilities PDF Author: D. Walgraef
Publisher: Springer Science & Business Media
ISBN: 9400905939
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book Here

Book Description
Understanding the origin of spatio-temporal order in open systems far from thermal equilibrium and the selection mechanisms of spatial struc tures and their symmetries is a major theme of present day research into the structures of continuous matter. The development of methods for pro ducing spatially ordered microstructures in solids by non-equilibrium methods opens the door to many technological applications. It is also be lieved that the key to laminar/turbulence transitions in fluids lies in the achievement of spatio-temporal order. Let us also emphasize the fact that the idea of self-organization in it self is at the origin of a reconceptualisation of science. Indeed, the appear ance of order which usually has been associated with equilibrium phase transitions appears to be characteristic of systems far from thermal equi librium. This phenomenon which was considered exceptional at first now the rule in driven systems. The chemical oscillations obtained appears to be in the Belousov-Zhabotinskii reaction were initially considered to be ther modynamically impossible and were rejected by a large number of chemists. Now these oscillations and related phenomena (waves, chaos, etc. ) are the subject of intensive research and new classes of chemical oscil lators have been recently discovered. Even living organisms have long been considered as the result of chance rather than necessity. Such points of view are now abandoned under the overwhelming influence of spatio-tem poral organization phenomena in various domains ranging from physics to biology via chemistry, nonlinear optics, and materials science .