Deep Learning with TensorFlow 2 and Keras

Deep Learning with TensorFlow 2 and Keras PDF Author: Antonio Gulli
Publisher: Packt Publishing Ltd
ISBN: 1838827722
Category : Computers
Languages : en
Pages : 647

Get Book Here

Book Description
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

Deep Learning with TensorFlow 2 and Keras

Deep Learning with TensorFlow 2 and Keras PDF Author: Antonio Gulli
Publisher: Packt Publishing Ltd
ISBN: 1838827722
Category : Computers
Languages : en
Pages : 647

Get Book Here

Book Description
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 830

Get Book Here

Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Advanced Deep Learning with TensorFlow 2 and Keras

Advanced Deep Learning with TensorFlow 2 and Keras PDF Author: Rowel Atienza
Publisher: Packt Publishing Ltd
ISBN: 183882572X
Category : Computers
Languages : en
Pages : 513

Get Book Here

Book Description
Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras Key FeaturesExplore the most advanced deep learning techniques that drive modern AI resultsNew coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentationCompletely updated for TensorFlow 2.xBook Description Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learnUse mutual information maximization techniques to perform unsupervised learningUse segmentation to identify the pixel-wise class of each object in an imageIdentify both the bounding box and class of objects in an image using object detectionLearn the building blocks for advanced techniques - MLPss, CNN, and RNNsUnderstand deep neural networks - including ResNet and DenseNetUnderstand and build autoregressive models – autoencoders, VAEs, and GANsDiscover and implement deep reinforcement learning methodsWho this book is for This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.

Deep Learning with Keras

Deep Learning with Keras PDF Author: Antonio Gulli
Publisher: Packt Publishing Ltd
ISBN: 1787129039
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.

Deep Learning Projects Using TensorFlow 2

Deep Learning Projects Using TensorFlow 2 PDF Author: Vinita Silaparasetty
Publisher: Apress
ISBN: 9781484258019
Category : Computers
Languages : en
Pages : 421

Get Book Here

Book Description
Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications. Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts. The best way to learn is by doing. You'll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You'll also work with Neural Networks and other deep learning concepts. By the end of the book, you'll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application. What You'll Learn Grasp the basic process of neural networks through projects, such as creating music Restore and colorize black and white images with deep learning processes Who This Book Is For Beginners new to TensorFlow and Python.

Advanced Deep Learning with Keras

Advanced Deep Learning with Keras PDF Author: Rowel Atienza
Publisher: Packt Publishing Ltd
ISBN: 178862453X
Category : Computers
Languages : en
Pages : 369

Get Book Here

Book Description
Understanding and coding advanced deep learning algorithms with the most intuitive deep learning library in existence Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs Book DescriptionRecent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks – ResNet and DenseNet Autoencoders and Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep reinforcement learning methods and implementation Produce industry-standard applications using OpenAI Gym Deep Q-Learning and Policy Gradient Methods Who this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.

Deep Learning Quick Reference

Deep Learning Quick Reference PDF Author: Michael Bernico
Publisher: Packt Publishing Ltd
ISBN: 1788838912
Category : Computers
Languages : en
Pages : 261

Get Book Here

Book Description
Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book Description Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is for If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.

Deep Learning with Applications Using Python

Deep Learning with Applications Using Python PDF Author: Navin Kumar Manaswi
Publisher: Apress
ISBN: 1484235169
Category : Computers
Languages : en
Pages : 228

Get Book Here

Book Description
Explore deep learning applications, such as computer vision, speech recognition, and chatbots, using frameworks such as TensorFlow and Keras. This book helps you to ramp up your practical know-how in a short period of time and focuses you on the domain, models, and algorithms required for deep learning applications. Deep Learning with Applications Using Python covers topics such as chatbots, natural language processing, and face and object recognition. The goal is to equip you with the concepts, techniques, and algorithm implementations needed to create programs capable of performing deep learning. This book covers convolutional neural networks, recurrent neural networks, and multilayer perceptrons. It also discusses popular APIs such as IBM Watson, Microsoft Azure, and scikit-learn. What You Will Learn Work with various deep learning frameworks such as TensorFlow, Keras, and scikit-learn. Use face recognition and face detection capabilities Create speech-to-text and text-to-speech functionality Engage with chatbots using deep learning Who This Book Is For Data scientists and developers who want to adapt and build deep learning applications.

Probabilistic Deep Learning

Probabilistic Deep Learning PDF Author: Oliver Duerr
Publisher: Manning
ISBN: 1617296074
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. Summary Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability teaches the increasingly popular probabilistic approach to deep learning that allows you to refine your results more quickly and accurately without much trial-and-error testing. Emphasizing practical techniques that use the Python-based Tensorflow Probability Framework, you’ll learn to build highly-performant deep learning applications that can reliably handle the noise and uncertainty of real-world data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pulling it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. About the book Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. What's inside Explore maximum likelihood and the statistical basis of deep learning Discover probabilistic models that can indicate possible outcomes Learn to use normalizing flows for modeling and generating complex distributions Use Bayesian neural networks to access the uncertainty in the model About the reader For experienced machine learning developers. About the author Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. Elvis Murina is a data scientist. Table of Contents PART 1 - BASICS OF DEEP LEARNING 1 Introduction to probabilistic deep learning 2 Neural network architectures 3 Principles of curve fitting PART 2 - MAXIMUM LIKELIHOOD APPROACHES FOR PROBABILISTIC DL MODELS 4 Building loss functions with the likelihood approach 5 Probabilistic deep learning models with TensorFlow Probability 6 Probabilistic deep learning models in the wild PART 3 - BAYESIAN APPROACHES FOR PROBABILISTIC DL MODELS 7 Bayesian learning 8 Bayesian neural networks

Deep Learning with Python

Deep Learning with Python PDF Author: Francois Chollet
Publisher: Simon and Schuster
ISBN: 1638352046
Category : Computers
Languages : en
Pages : 620

Get Book Here

Book Description
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance