Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Deep Learning through Sparse and Low-Rank Modeling
Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Machine Learning Techniques on Gene Function Prediction Volume II
Author: Quan Zou
Publisher: Frontiers Media SA
ISBN: 2889766322
Category : Science
Languages : en
Pages : 264
Book Description
Publisher: Frontiers Media SA
ISBN: 2889766322
Category : Science
Languages : en
Pages : 264
Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Author: Thierry Bouwmans
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510
Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
Publisher: CRC Press
ISBN: 1315353539
Category : Computers
Languages : en
Pages : 510
Book Description
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
Enterprise Information Systems
Author: Joaquim Filipe
Publisher: Springer Nature
ISBN: 3031393864
Category : Computers
Languages : en
Pages : 439
Book Description
This book constitutes the refereed post-conference proceedings of the 24th International Conference on Enterprise Information Systems, ICEIS 2022, This conference was held virtually due to the COVID-19 crisis, during April 25-27, 2022. The 20 full papers included in this book were carefully reviewed and selected from 197 submissions. They were organized in topical sections as follows: Databases and Information Systems Integration; Artificial Intelligence and Decision Support Systems; Information Systems Analysis and Specification; Human-Computer Interaction; and Enterprise Architecture.
Publisher: Springer Nature
ISBN: 3031393864
Category : Computers
Languages : en
Pages : 439
Book Description
This book constitutes the refereed post-conference proceedings of the 24th International Conference on Enterprise Information Systems, ICEIS 2022, This conference was held virtually due to the COVID-19 crisis, during April 25-27, 2022. The 20 full papers included in this book were carefully reviewed and selected from 197 submissions. They were organized in topical sections as follows: Databases and Information Systems Integration; Artificial Intelligence and Decision Support Systems; Information Systems Analysis and Specification; Human-Computer Interaction; and Enterprise Architecture.
Computer Vision for Microscopy Image Analysis
Author: Mei Chen
Publisher: Academic Press
ISBN: 0128149736
Category : Computers
Languages : en
Pages : 230
Book Description
Are you a computer scientist working on image analysis? Are you a biologist seeking tools to process the microscopy data from image-based experiments? Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth discussion of modern computer vision techniques, in particular deep learning, for microscopy image analysis that will advance your efforts.Progress in imaging techniques has enabled the acquisition of large volumes of microscopy data and made it possible to conduct large-scale, image-based experiments for biomedical discovery. The main challenge and bottleneck in such experiments is the conversion of "big visual data" into interpretable information.Visual analysis of large-scale microscopy data is a daunting task. Computer vision has the potential to automate this task. One key advantage is that computers perform analysis more reproducibly and less subjectively than human annotators. Moreover, high-throughput microscopy calls for effective and efficient techniques as there are not enough human resources to advance science by manual annotation.This book articulates the strong need for biologists and computer vision experts to collaborate to overcome the limits of human visual perception, and devotes a chapter each to the major steps in analyzing microscopy images, such as detection and segmentation, classification, tracking, and event detection. - Discover how computer vision can automate and enhance the human assessment of microscopy images for discovery - Grasp the state-of-the-art approaches, especially deep neural networks - Learn where to obtain open-source datasets and software to jumpstart his or her own investigation
Publisher: Academic Press
ISBN: 0128149736
Category : Computers
Languages : en
Pages : 230
Book Description
Are you a computer scientist working on image analysis? Are you a biologist seeking tools to process the microscopy data from image-based experiments? Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth discussion of modern computer vision techniques, in particular deep learning, for microscopy image analysis that will advance your efforts.Progress in imaging techniques has enabled the acquisition of large volumes of microscopy data and made it possible to conduct large-scale, image-based experiments for biomedical discovery. The main challenge and bottleneck in such experiments is the conversion of "big visual data" into interpretable information.Visual analysis of large-scale microscopy data is a daunting task. Computer vision has the potential to automate this task. One key advantage is that computers perform analysis more reproducibly and less subjectively than human annotators. Moreover, high-throughput microscopy calls for effective and efficient techniques as there are not enough human resources to advance science by manual annotation.This book articulates the strong need for biologists and computer vision experts to collaborate to overcome the limits of human visual perception, and devotes a chapter each to the major steps in analyzing microscopy images, such as detection and segmentation, classification, tracking, and event detection. - Discover how computer vision can automate and enhance the human assessment of microscopy images for discovery - Grasp the state-of-the-art approaches, especially deep neural networks - Learn where to obtain open-source datasets and software to jumpstart his or her own investigation
Vision Models for High Dynamic Range and Wide Colour Gamut Imaging
Author: Marcelo Bertalmío
Publisher: Academic Press
ISBN: 0128138955
Category : Computers
Languages : en
Pages : 326
Book Description
To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of these technologies, however, has been hampered by the significant challenge of understanding the science behind visual perception. Vision Models for High Dynamic Range and Wide Colour Gamut Imaging provides university researchers and graduate students in computer science, computer engineering, vision science, as well as industry R&D engineers, an insight into the science and methods for HDR and WCG. It presents the underlying principles and latest practical methods in a detailed and accessible way, highlighting how the use of vision models is a key element of all state-of-the-art methods for these emerging technologies. - Presents the underlying vision science principles and models that are essential to the emerging technologies of HDR and WCG - Explores state-of-the-art techniques for tone and gamut mapping - Discusses open challenges and future directions of HDR and WCG research
Publisher: Academic Press
ISBN: 0128138955
Category : Computers
Languages : en
Pages : 326
Book Description
To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of these technologies, however, has been hampered by the significant challenge of understanding the science behind visual perception. Vision Models for High Dynamic Range and Wide Colour Gamut Imaging provides university researchers and graduate students in computer science, computer engineering, vision science, as well as industry R&D engineers, an insight into the science and methods for HDR and WCG. It presents the underlying principles and latest practical methods in a detailed and accessible way, highlighting how the use of vision models is a key element of all state-of-the-art methods for these emerging technologies. - Presents the underlying vision science principles and models that are essential to the emerging technologies of HDR and WCG - Explores state-of-the-art techniques for tone and gamut mapping - Discusses open challenges and future directions of HDR and WCG research
Spectral Geometry of Shapes
Author: Jing Hua
Publisher: Academic Press
ISBN: 0128138424
Category : Computers
Languages : en
Pages : 152
Book Description
Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.
Publisher: Academic Press
ISBN: 0128138424
Category : Computers
Languages : en
Pages : 152
Book Description
Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.
Artificial Intelligence, Evolutionary Computing and Metaheuristics
Author: Xin-She Yang
Publisher: Springer
ISBN: 3642296947
Category : Technology & Engineering
Languages : en
Pages : 797
Book Description
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.
Publisher: Springer
ISBN: 3642296947
Category : Technology & Engineering
Languages : en
Pages : 797
Book Description
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics
Author: Felix Fritzen
Publisher: MDPI
ISBN: 3039214098
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.
Publisher: MDPI
ISBN: 3039214098
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.
Advances in Knowledge Discovery and Data Mining
Author: De-Nian Yang
Publisher: Springer Nature
ISBN: 981972242X
Category :
Languages : en
Pages : 406
Book Description
Publisher: Springer Nature
ISBN: 981972242X
Category :
Languages : en
Pages : 406
Book Description