Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning)

Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning) PDF Author: Editor IJSMI
Publisher: International Journal of Statistics and Medical Informatics
ISBN: 1796489034
Category : Computers
Languages : en
Pages : 60

Get Book Here

Book Description
Deep Learning Models and its application: An overview with the help of R softwarePrefaceDeep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. This book intends to provide an overview of Deep Learning models, its application in the areas of image recognition & classification, sentiment analysis, natural language processing, stock market prediction using R statistical software package, an open source software package. The book also includes an introduction to python software package which is also open source software for the benefit of the users.This books is a second book in series after the author’s first book- Machine Learning: An Overview with the Help of R Software https://www.amazon.com/dp/B07KQSN447EditorInternational Journal of Statistics and Medical Informaticswww.ijsmi.com/book.php

Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning)

Deep Learning Models and its application: An overview with the help of R software: Second in series (Machine Learning) PDF Author: Editor IJSMI
Publisher: International Journal of Statistics and Medical Informatics
ISBN: 1796489034
Category : Computers
Languages : en
Pages : 60

Get Book Here

Book Description
Deep Learning Models and its application: An overview with the help of R softwarePrefaceDeep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. This book intends to provide an overview of Deep Learning models, its application in the areas of image recognition & classification, sentiment analysis, natural language processing, stock market prediction using R statistical software package, an open source software package. The book also includes an introduction to python software package which is also open source software for the benefit of the users.This books is a second book in series after the author’s first book- Machine Learning: An Overview with the Help of R Software https://www.amazon.com/dp/B07KQSN447EditorInternational Journal of Statistics and Medical Informaticswww.ijsmi.com/book.php

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Deep Learning Models explored with help of Python Programming

Deep Learning Models explored with help of Python Programming PDF Author: Editor IJSMI
Publisher: International Journal of Statistics and Medical Informatics
ISBN:
Category : Young Adult Nonfiction
Languages : en
Pages : 102

Get Book Here

Book Description
This is the second book in the Deep Learning models series by the author. Deep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. The book starts with the Introduction part which is adopted from Author’s Deep Learning Models and its application: An overview with the help of R software book and move on to the Python’s important data processing packages such Numpy, and Pandas. Book then explores the Deep Learning models with the help of packages such as Pytorch, Tensor Flow and Keras and their applications in image processing, stock market prediction, recommender systems and natural language processing. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php ISBN: 9798558877953 E-Books: https://www.amazon.com/dp/B08MQTM1ZP Paperbacks: https://www.amazon.com/dp/B08MSQ3R8R

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Deep Learning with PyTorch

Deep Learning with PyTorch PDF Author: Luca Pietro Giovanni Antiga
Publisher: Simon and Schuster
ISBN: 1638354073
Category : Computers
Languages : en
Pages : 518

Get Book Here

Book Description
“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Deep Learning with R

Deep Learning with R PDF Author: François Chollet
Publisher: Simon and Schuster
ISBN: 1638351635
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Continue your journey into the world of deep learning with Deep Learning with R in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/deep-​learning-with-r-in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors François Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions

Probabilistic Machine Learning

Probabilistic Machine Learning PDF Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858

Get Book Here

Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Hands-On Machine Learning with R

Hands-On Machine Learning with R PDF Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373

Get Book Here

Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Futuristic Trends in Networks and Computing Technologies

Futuristic Trends in Networks and Computing Technologies PDF Author: Pradeep Kumar Singh
Publisher: Springer Nature
ISBN: 9811544514
Category : Computers
Languages : en
Pages : 717

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second International Conference on Futuristic Trends in Network and Communication Technologies, FTNCT 2019, held in Chandigarh, India, in November 2019. The 49 revised full papers and 6 short papers presented were carefully reviewed and selected from 226 submissions. The prime aim of the conference is to invite researchers from different domains of network and communication technologies to a single platform to showcase their research ideas. The selected papers are organized in topical sections on network and computing technologies; wireless networks and Internet of Things (IoT); futuristic computing technologies; communication technologies, security and privacy.

9789386173423

9789386173423 PDF Author: Rajiv Chopra
Publisher: KHANNA PUBLISHING HOUSE
ISBN: 9386173425
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
This book attempts to provide a unified overview of the broad field of Machine Learning and its Practical implementation. This book is a survey of the state of art. It breaks this massive subject into comprehensible parts piece by piece. The objective is to focus on basic principles of machine learning with some leading edge topics. This book addresses a full spectrum of machine learning programming. The emphasis is to solve lot many programming examples using step-by step practical implementation of machine learning algorithms. To facilitate easy understanding of machine learning, this book has been written in such a simple style that a student thinks as if a teacher is sitting behind him and guiding him. This book is written as per the new syllabus of different Universities of India. It also Cover the syllabus of B.Tech.(CSE/IT), MCA, BCA of Delhi University, Delhi. GGSIPU, MDU, RGTU, Nagpur University, UTU, APJ Abdul Kalam University so on. The book is intended for both academic and professional audience.