Deep Learning in Visual Computing and Signal Processing

Deep Learning in Visual Computing and Signal Processing PDF Author: Krishna Kant Singh
Publisher: CRC Press
ISBN: 1000565238
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
Covers both the fundamentals and the latest concepts in deep learning Presents some of the diverse applications of deep learning in visual computing and signal processing Includes over 90 figures and tables to elucidate the text

Deep Learning in Visual Computing and Signal Processing

Deep Learning in Visual Computing and Signal Processing PDF Author: Krishna Kant Singh
Publisher: CRC Press
ISBN: 1000565238
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
Covers both the fundamentals and the latest concepts in deep learning Presents some of the diverse applications of deep learning in visual computing and signal processing Includes over 90 figures and tables to elucidate the text

Convolutional Neural Networks in Visual Computing

Convolutional Neural Networks in Visual Computing PDF Author: Ragav Venkatesan
Publisher: CRC Press
ISBN: 1351650327
Category : Computers
Languages : en
Pages : 204

Get Book Here

Book Description
This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.

Deep Learning

Deep Learning PDF Author: Li Deng
Publisher:
ISBN: 9781601988140
Category : Machine learning
Languages : en
Pages : 212

Get Book Here

Book Description
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks

Cellular Neural Networks and Visual Computing

Cellular Neural Networks and Visual Computing PDF Author: Leon O. Chua
Publisher: Cambridge University Press
ISBN: 9780521652476
Category : Computers
Languages : en
Pages : 410

Get Book Here

Book Description
Cellular Nonlinear/Neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Leon Chua, co-inventor of the CNN, and Tamàs Roska are both highly respected pioneers in the field.

Neural Networks and Learning Machines

Neural Networks and Learning Machines PDF Author: Simon S. Haykin
Publisher: Prentice Hall
ISBN: 0131471392
Category : Adaptive filters
Languages : en
Pages : 938

Get Book Here

Book Description
For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Matlab codes used for the computer experiments in the text are available for download at: http: //www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.

Dictionary Learning in Visual Computing

Dictionary Learning in Visual Computing PDF Author: Qiang Zhang
Publisher: Springer Nature
ISBN: 303102253X
Category : Technology & Engineering
Languages : en
Pages : 133

Get Book Here

Book Description
The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.

Deep Learning

Deep Learning PDF Author: Andrew Glassner
Publisher: No Starch Press
ISBN: 1718500734
Category : Computers
Languages : en
Pages : 1315

Get Book Here

Book Description
A richly-illustrated, full-color introduction to deep learning that offers visual and conceptual explanations instead of equations. You'll learn how to use key deep learning algorithms without the need for complex math. Ever since computers began beating us at chess, they've been getting better at a wide range of human activities, from writing songs and generating news articles to helping doctors provide healthcare. Deep learning is the source of many of these breakthroughs, and its remarkable ability to find patterns hiding in data has made it the fastest growing field in artificial intelligence (AI). Digital assistants on our phones use deep learning to understand and respond intelligently to voice commands; automotive systems use it to safely navigate road hazards; online platforms use it to deliver personalized suggestions for movies and books - the possibilities are endless. Deep Learning: A Visual Approach is for anyone who wants to understand this fascinating field in depth, but without any of the advanced math and programming usually required to grasp its internals. If you want to know how these tools work, and use them yourself, the answers are all within these pages. And, if you're ready to write your own programs, there are also plenty of supplemental Python notebooks in the accompanying Github repository to get you going. The book's conversational style, extensive color illustrations, illuminating analogies, and real-world examples expertly explain the key concepts in deep learning, including: • How text generators create novel stories and articles • How deep learning systems learn to play and win at human games • How image classification systems identify objects or people in a photo • How to think about probabilities in a way that's useful to everyday life • How to use the machine learning techniques that form the core of modern AI Intellectual adventurers of all kinds can use the powerful ideas covered in Deep Learning: A Visual Approach to build intelligent systems that help us better understand the world and everyone who lives in it. It's the future of AI, and this book allows you to fully envision it. Full Color Illustrations

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Advances in Neural Information Processing Systems 19

Advances in Neural Information Processing Systems 19 PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 0262195682
Category : Artificial intelligence
Languages : en
Pages : 1668

Get Book Here

Book Description
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Predicting Structured Data

Predicting Structured Data PDF Author: Neural Information Processing Systems Foundation
Publisher: MIT Press
ISBN: 0262026171
Category : Algorithms
Languages : en
Pages : 361

Get Book Here

Book Description
State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.