Deep Learning for Human Activity Recognition

Deep Learning for Human Activity Recognition PDF Author: Xiaoli Li
Publisher: Springer Nature
ISBN: 9811605750
Category : Computers
Languages : en
Pages : 139

Get Book Here

Book Description
This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.

Deep Learning for Human Activity Recognition

Deep Learning for Human Activity Recognition PDF Author: Xiaoli Li
Publisher: Springer Nature
ISBN: 9811605750
Category : Computers
Languages : en
Pages : 139

Get Book Here

Book Description
This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.

Applied Video Processing in Surveillance and Monitoring Systems

Applied Video Processing in Surveillance and Monitoring Systems PDF Author: Dey, Nilanjan
Publisher: IGI Global
ISBN: 1522510230
Category : Computers
Languages : en
Pages : 352

Get Book Here

Book Description
Video monitoring has become a vital aspect within the global society as it helps prevent crime, promote safety, and track daily activities such as traffic. As technology in the area continues to improve, it is necessary to evaluate how video is being processed to improve the quality of images. Applied Video Processing in Surveillance and Monitoring Systems investigates emergent techniques in video and image processing by evaluating such topics as segmentation, noise elimination, encryption, and classification. Featuring real-time applications, empirical research, and vital frameworks within the field, this publication is a critical reference source for researchers, professionals, engineers, academicians, advanced-level students, and technology developers.

Machine Learning for Vision-Based Motion Analysis

Machine Learning for Vision-Based Motion Analysis PDF Author: Liang Wang
Publisher: Springer Science & Business Media
ISBN: 0857290576
Category : Computers
Languages : en
Pages : 377

Get Book Here

Book Description
Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.

Deep Learning in Computer Vision

Deep Learning in Computer Vision PDF Author: Mahmoud Hassaballah
Publisher: CRC Press
ISBN: 1351003801
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

New Trends in Information and Communications Technology Applications

New Trends in Information and Communications Technology Applications PDF Author: Abbas M. Al-Bakry
Publisher: Springer Nature
ISBN: 3030934179
Category : Computers
Languages : en
Pages : 217

Get Book Here

Book Description
This book constitutes refereed proceedings of the 5th International Conference on New Trends in Information and Communications Technology Applications, NTICT 2021, held in Baghdad, Iraq, in November 2021. The 13 full papers presented were thoroughly reviewed and selected from 52 qualified submissions. The volume presents the latest research results in such areas as network protocols, overlay and other logical network structures, wireless access networks, computer vision, machine learning, artificial Intelligence, data mining, control methods.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Methods of Behavior Analysis in Neuroscience

Methods of Behavior Analysis in Neuroscience PDF Author: Jerry J. Buccafusco
Publisher: CRC Press
ISBN: 1420041819
Category : Medical
Languages : en
Pages : 341

Get Book Here

Book Description
Using the most well-studied behavioral analyses of animal subjects to promote a better understanding of the effects of disease and the effects of new therapeutic treatments on human cognition, Methods of Behavior Analysis in Neuroscience provides a reference manual for molecular and cellular research scientists in both academia and the pharmaceutic

Body Sensor Networks

Body Sensor Networks PDF Author: Guang-Zhong Yang
Publisher: Springer
ISBN: 1447163745
Category : Computers
Languages : en
Pages : 572

Get Book Here

Book Description
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.

Deep Learning for Time Series Forecasting

Deep Learning for Time Series Forecasting PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572

Get Book Here

Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Advances in Soft Computing and Machine Learning in Image Processing

Advances in Soft Computing and Machine Learning in Image Processing PDF Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 3319637541
Category : Technology & Engineering
Languages : en
Pages : 711

Get Book Here

Book Description
This book is a collection of the latest applications of methods from soft computing and machine learning in image processing. It explores different areas ranging from image segmentation to the object recognition using complex approaches, and includes the theory of the methodologies used to provide an overview of the application of these tools in image processing. The material has been compiled from a scientific perspective, and the book is primarily intended for undergraduate and postgraduate science, engineering, and computational mathematics students. It can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence, and is a valuable resource for researchers in the evolutionary computation, artificial intelligence and image processing communities.