Author: Basant Agarwal
Publisher: Springer Nature
ISBN: 9811512167
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Deep Learning-Based Approaches for Sentiment Analysis
Author: Basant Agarwal
Publisher: Springer Nature
ISBN: 9811512167
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Publisher: Springer Nature
ISBN: 9811512167
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Deep Learning-Based Approaches for Sentiment Analysis
Author: Basant Agarwal
Publisher: Springer
ISBN: 9789811512186
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Publisher: Springer
ISBN: 9789811512186
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Deep Learning-based Approaches for Sentiment Analysis
Author:
Publisher:
ISBN: 9789811512179
Category : Data mining
Languages : en
Pages : 326
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Publisher:
ISBN: 9789811512179
Category : Data mining
Languages : en
Pages : 326
Book Description
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Deep Learning Applications for Cyber-Physical Systems
Author: Mundada, Monica R.
Publisher: IGI Global
ISBN: 1799881636
Category : Computers
Languages : en
Pages : 293
Book Description
Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.
Publisher: IGI Global
ISBN: 1799881636
Category : Computers
Languages : en
Pages : 293
Book Description
Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.
Opinion Mining and Sentiment Analysis
Author: Bo Pang
Publisher: Now Publishers Inc
ISBN: 1601981503
Category : Data mining
Languages : en
Pages : 149
Book Description
This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems.
Publisher: Now Publishers Inc
ISBN: 1601981503
Category : Data mining
Languages : en
Pages : 149
Book Description
This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems.
Sentiment Analysis
Author: Bing Liu
Publisher: Cambridge University Press
ISBN: 1108787282
Category : Computers
Languages : en
Pages : 451
Book Description
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Publisher: Cambridge University Press
ISBN: 1108787282
Category : Computers
Languages : en
Pages : 451
Book Description
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Intelligent Techniques and Applications in Science and Technology
Author: Subhojit Dawn
Publisher: Springer Nature
ISBN: 3030423638
Category : Technology & Engineering
Languages : en
Pages : 1126
Book Description
This book provides innovative ideas on achieving sustainable development and using green technologies to conserve our ecosystem. Innovation is the successful exploitation of a new idea. Through innovation, we can achieve MORE while using LESS. Innovations in science & technology will not only help mankind as a whole, but also contribute to the economic growth of individual countries. It is essential that the global problem of environmental degradation be addressed immediately, and thus, we need to rethink the concept of sustainable development. Indeed, new environmentally friendly technologies are fundamental to attaining sustainable development. The book shares a wealth of innovative green technological ideas on how to preserve and improve the quality of the environment, and how to establish a more resource-efficient and sustainable society. The book provides an interdisciplinary approach to addressing various technical issues and capitalizing on advances in computing & optimization for scientific & technological development, smart information, communication, bio-monitoring, smart cities, food quality assessment, waste management, environmental aspects, alternative energies, sustainable infrastructure development, etc. In short, it offers valuable information and insights for budding engineers, researchers, upcoming young minds and industry professionals, promoting awareness for recent advances in the various fields mentioned above.
Publisher: Springer Nature
ISBN: 3030423638
Category : Technology & Engineering
Languages : en
Pages : 1126
Book Description
This book provides innovative ideas on achieving sustainable development and using green technologies to conserve our ecosystem. Innovation is the successful exploitation of a new idea. Through innovation, we can achieve MORE while using LESS. Innovations in science & technology will not only help mankind as a whole, but also contribute to the economic growth of individual countries. It is essential that the global problem of environmental degradation be addressed immediately, and thus, we need to rethink the concept of sustainable development. Indeed, new environmentally friendly technologies are fundamental to attaining sustainable development. The book shares a wealth of innovative green technological ideas on how to preserve and improve the quality of the environment, and how to establish a more resource-efficient and sustainable society. The book provides an interdisciplinary approach to addressing various technical issues and capitalizing on advances in computing & optimization for scientific & technological development, smart information, communication, bio-monitoring, smart cities, food quality assessment, waste management, environmental aspects, alternative energies, sustainable infrastructure development, etc. In short, it offers valuable information and insights for budding engineers, researchers, upcoming young minds and industry professionals, promoting awareness for recent advances in the various fields mentioned above.
Supervised Machine Learning for Text Analysis in R
Author: Emil Hvitfeldt
Publisher: CRC Press
ISBN: 1000461971
Category : Computers
Languages : en
Pages : 402
Book Description
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.
Publisher: CRC Press
ISBN: 1000461971
Category : Computers
Languages : en
Pages : 402
Book Description
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.
Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2018)
Author: A.Pasumpon Pandian
Publisher: Springer
ISBN: 3030246434
Category : Technology & Engineering
Languages : en
Pages : 1097
Book Description
This book presents the proceedings of the International Conference on Computer Networks, Big Data and IoT (ICCBI-2018), held on December 19–20, 2018 in Madurai, India. In recent years, advances in information and communication technologies [ICT] have collectively aimed to streamline the evolution of internet applications. In this context, increasing the ubiquity of emerging internet applications with an enhanced capability to communicate in a distributed environment has become a major need for existing networking models and applications. To achieve this, Internet of Things [IoT] models have been developed to facilitate a smart interconnection and information exchange among modern objects – which plays an essential role in every aspect of our lives. Due to their pervasive nature, computer networks and IoT can easily connect and engage effectively with their network users. This vast network continuously generates data from heterogeneous devices, creating a need to utilize big data, which provides new and unprecedented opportunities to process these huge volumes of data. This International Conference on Computer Networks, Big Data, and Internet of Things [ICCBI] brings together state-of-the-art research work, which briefly describes advanced IoT applications in the era of big data. As such, it offers valuable insights for researchers and scientists involved in developing next-generation, big-data-driven IoT applications to address the real-world challenges in building a smartly connected environment.
Publisher: Springer
ISBN: 3030246434
Category : Technology & Engineering
Languages : en
Pages : 1097
Book Description
This book presents the proceedings of the International Conference on Computer Networks, Big Data and IoT (ICCBI-2018), held on December 19–20, 2018 in Madurai, India. In recent years, advances in information and communication technologies [ICT] have collectively aimed to streamline the evolution of internet applications. In this context, increasing the ubiquity of emerging internet applications with an enhanced capability to communicate in a distributed environment has become a major need for existing networking models and applications. To achieve this, Internet of Things [IoT] models have been developed to facilitate a smart interconnection and information exchange among modern objects – which plays an essential role in every aspect of our lives. Due to their pervasive nature, computer networks and IoT can easily connect and engage effectively with their network users. This vast network continuously generates data from heterogeneous devices, creating a need to utilize big data, which provides new and unprecedented opportunities to process these huge volumes of data. This International Conference on Computer Networks, Big Data, and Internet of Things [ICCBI] brings together state-of-the-art research work, which briefly describes advanced IoT applications in the era of big data. As such, it offers valuable insights for researchers and scientists involved in developing next-generation, big-data-driven IoT applications to address the real-world challenges in building a smartly connected environment.
Intelligent Computing & Optimization
Author: Pandian Vasant
Publisher: Springer Nature
ISBN: 3030932478
Category : Technology & Engineering
Languages : en
Pages : 1020
Book Description
This book includes the scientific results of the fourth edition of the International Conference on Intelligent Computing and Optimization which took place at December 30–31, 2021, via ZOOM. The conference objective was to celebrate “Compassion and Wisdom” with researchers, scholars, experts and investigators in Intelligent Computing and Optimization worldwide, to share knowledge, experience, innovation—marvelous opportunity for discourse and mutuality by novel research, invention and creativity. This proceedings encloses the original and innovative scientific fields of optimization and optimal control, renewable energy and sustainability, artificial intelligence and operational research, economics and management, smart cities and rural planning, meta-heuristics and big data analytics, cyber security and blockchains, IoTs and Industry 4.0, mathematical modelling and simulation, health care and medicine.
Publisher: Springer Nature
ISBN: 3030932478
Category : Technology & Engineering
Languages : en
Pages : 1020
Book Description
This book includes the scientific results of the fourth edition of the International Conference on Intelligent Computing and Optimization which took place at December 30–31, 2021, via ZOOM. The conference objective was to celebrate “Compassion and Wisdom” with researchers, scholars, experts and investigators in Intelligent Computing and Optimization worldwide, to share knowledge, experience, innovation—marvelous opportunity for discourse and mutuality by novel research, invention and creativity. This proceedings encloses the original and innovative scientific fields of optimization and optimal control, renewable energy and sustainability, artificial intelligence and operational research, economics and management, smart cities and rural planning, meta-heuristics and big data analytics, cyber security and blockchains, IoTs and Industry 4.0, mathematical modelling and simulation, health care and medicine.