Author: Oded Maimon
Publisher: World Scientific Publishing Company
ISBN: 9813106441
Category : Computers
Languages : en
Pages : 344
Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.
Decomposition Methodology for Knowledge Discovery and Data Mining
Author: Oded Maimon
Publisher: World Scientific Publishing Company
ISBN: 9813106441
Category : Computers
Languages : en
Pages : 344
Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.
Publisher: World Scientific Publishing Company
ISBN: 9813106441
Category : Computers
Languages : en
Pages : 344
Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.
Data Mining and Knowledge Discovery Handbook
Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378
Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378
Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Decomposition Methodology for Knowledge Discovery and Data Mining
Author: Oded Z. Maimon
Publisher: World Scientific
ISBN: 9812560793
Category : Computers
Languages : en
Pages : 346
Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem.The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.
Publisher: World Scientific
ISBN: 9812560793
Category : Computers
Languages : en
Pages : 346
Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem.The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.
Soft Computing for Knowledge Discovery and Data Mining
Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038769935X
Category : Computers
Languages : en
Pages : 431
Book Description
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Publisher: Springer Science & Business Media
ISBN: 038769935X
Category : Computers
Languages : en
Pages : 431
Book Description
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Urban Informatics
Author: Wenzhong Shi
Publisher: Springer Nature
ISBN: 9811589836
Category : Social Science
Languages : en
Pages : 928
Book Description
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
Publisher: Springer Nature
ISBN: 9811589836
Category : Social Science
Languages : en
Pages : 928
Book Description
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
Content-Addressable Memories
Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642830560
Category : Computers
Languages : en
Pages : 397
Book Description
Due to continual progress in the large-scale integration of semiconductor circuits, parallel computing principles can already be met in low-cost sys tems: numerous examples exist in image processing, for which special hard ware is implementable with quite modest resources even by nonprofessional designers. Principles of content addressing, if thoroughly understood, can thereby be applied effectively using standard components. On the other hand, mass storage based on associative principles still exists only in the long term plans of computer technologists. This situation is somewhat confused by the fact that certain expectations are held for the development of new storage media such as optical memories and "spin glasses" (metal alloys with low-density magnetic impurities). Their technologies, however, may not ripen until after "fifth generation" computers have been built. It seems that software methods for content addressing, especially those based on hash coding principles, are still holding their position firmly, and a few innovations have been developed recently. As they need no special hardware, one might expect that they will spread to a wide circle of users. This monograph is based on an extensive literature survey, most of which was published in the First Edition. I have added Chap. ?, which contains a review of more recent work. This updated book now has references to over 1200 original publications. In the editing of the new material, I received valuable help from Anneli HeimbUrger, M. Sc. , and Mrs. Leila Koivisto.
Publisher: Springer Science & Business Media
ISBN: 3642830560
Category : Computers
Languages : en
Pages : 397
Book Description
Due to continual progress in the large-scale integration of semiconductor circuits, parallel computing principles can already be met in low-cost sys tems: numerous examples exist in image processing, for which special hard ware is implementable with quite modest resources even by nonprofessional designers. Principles of content addressing, if thoroughly understood, can thereby be applied effectively using standard components. On the other hand, mass storage based on associative principles still exists only in the long term plans of computer technologists. This situation is somewhat confused by the fact that certain expectations are held for the development of new storage media such as optical memories and "spin glasses" (metal alloys with low-density magnetic impurities). Their technologies, however, may not ripen until after "fifth generation" computers have been built. It seems that software methods for content addressing, especially those based on hash coding principles, are still holding their position firmly, and a few innovations have been developed recently. As they need no special hardware, one might expect that they will spread to a wide circle of users. This monograph is based on an extensive literature survey, most of which was published in the First Edition. I have added Chap. ?, which contains a review of more recent work. This updated book now has references to over 1200 original publications. In the editing of the new material, I received valuable help from Anneli HeimbUrger, M. Sc. , and Mrs. Leila Koivisto.
Data Mining Methods for Knowledge Discovery
Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508
Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508
Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.
Feature Selection for Knowledge Discovery and Data Mining
Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225
Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225
Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.
Data Mining
Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601
Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601
Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Understanding Complex Datasets
Author: David Skillicorn
Publisher: CRC Press
ISBN: 1584888334
Category : Computers
Languages : en
Pages : 268
Book Description
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book
Publisher: CRC Press
ISBN: 1584888334
Category : Computers
Languages : en
Pages : 268
Book Description
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book