Decision Estimation and Classification

Decision Estimation and Classification PDF Author: Charles W. Therrien
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
Very Good,No Highlights or Markup,all pages are intact.

Decision Estimation and Classification

Decision Estimation and Classification PDF Author: Charles W. Therrien
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
Very Good,No Highlights or Markup,all pages are intact.

Decision Forests

Decision Forests PDF Author: Antonio Criminisi
Publisher: Foundations and Trends(r) in C
ISBN: 9781601985408
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
Presents a unified, efficient model of random decision forests which can be used in a number of applications such as scene recognition from photographs, object recognition in images, automatic diagnosis from radiological scans and document analysis.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Walter Daelemans
Publisher: Springer Science & Business Media
ISBN: 354087478X
Category : Computers
Languages : en
Pages : 714

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Pattern Recognition

Pattern Recognition PDF Author: Sergios Theodoridis
Publisher: Elsevier
ISBN: 008051362X
Category : Technology & Engineering
Languages : en
Pages : 705

Get Book Here

Book Description
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

Classification and Regression Trees

Classification and Regression Trees PDF Author: Leo Breiman
Publisher: Routledge
ISBN: 135146048X
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

Technometrics

Technometrics PDF Author:
Publisher:
ISBN:
Category : Experimental design
Languages : en
Pages : 512

Get Book Here

Book Description


Pattern Classification

Pattern Classification PDF Author: Richard O. Duda
Publisher: John Wiley & Sons
ISBN: 111858600X
Category : Technology & Engineering
Languages : en
Pages : 680

Get Book Here

Book Description
The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance PDF Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Decision Forests for Computer Vision and Medical Image Analysis

Decision Forests for Computer Vision and Medical Image Analysis PDF Author: Antonio Criminisi
Publisher: Springer Science & Business Media
ISBN: 1447149297
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.