Author: Arthur G.O. Mutambara
Publisher: Routledge
ISBN: 1351456490
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Decentralized Estimation and Control for Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia. Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted. Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources. Decentralized Estimation and Control for Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation. The text discusses: Generalizing the linear Information filter to the problem of estimation for nonlinear systems Developing a decentralized form of the algorithm Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states Reducing computational requirements by using smaller local model sizes Defining internodal communication Developing estima
Decentralized Estimation and Control for Multisensor Systems
Author: Arthur G.O. Mutambara
Publisher: Routledge
ISBN: 1351456490
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Decentralized Estimation and Control for Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia. Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted. Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources. Decentralized Estimation and Control for Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation. The text discusses: Generalizing the linear Information filter to the problem of estimation for nonlinear systems Developing a decentralized form of the algorithm Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states Reducing computational requirements by using smaller local model sizes Defining internodal communication Developing estima
Publisher: Routledge
ISBN: 1351456490
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Decentralized Estimation and Control for Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia. Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted. Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources. Decentralized Estimation and Control for Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation. The text discusses: Generalizing the linear Information filter to the problem of estimation for nonlinear systems Developing a decentralized form of the algorithm Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states Reducing computational requirements by using smaller local model sizes Defining internodal communication Developing estima
Multisensor Fusion
Author: Anthony K. Hyder
Publisher: Springer Science & Business Media
ISBN: 9401005567
Category : Computers
Languages : en
Pages : 929
Book Description
For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.
Publisher: Springer Science & Business Media
ISBN: 9401005567
Category : Computers
Languages : en
Pages : 929
Book Description
For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.
Decentralized Estimation Using Conservative Information Extraction
Author: Robin Forsling
Publisher: Linköping University Electronic Press
ISBN: 9179297242
Category :
Languages : en
Pages : 110
Book Description
Sensor networks consist of sensors (e.g., radar and cameras) and processing units (e.g., estimators), where in the former information extraction occurs and in the latter estimates are formed. In decentralized estimation information extracted by sensors has been pre-processed at an intermediate processing unit prior to arriving at an estimator. Pre-processing of information allows for the complexity of large systems and systems-of-systems to be significantly reduced, and also makes the sensor network robust and flexible. One of the main disadvantages of pre-processing information is that information becomes correlated. These correlations, if not handled carefully, potentially lead to underestimated uncertainties about the calculated estimates. In conservative estimation the unknown correlations are handled by ensuring that the uncertainty about an estimate is not underestimated. If this is ensured the estimate is said to be conservative. Neglecting correlations means information is double counted which in worst case implies diverging estimates with fatal consequences. While ensuring conservative estimates is the main goal, it is desirable for a conservative estimator, as for any estimator, to provide an error covariance which is as small as possible. Application areas where conservative estimation is relevant are setups where multiple agents cooperate to accomplish a common objective, e.g., target tracking, surveillance and air policing. The first part of this thesis deals with theoretical matters where the conservative linear unbiased estimation problem is formalized. This part proposes an extension of classical linear estimation theory to the conservative estimation problem. The conservative linear unbiased estimator (CLUE) is suggested as a robust and practical alternative for estimation problems where the correlations are unknown. Optimality criteria for the CLUE are provided and further investigated. It is shown that finding an optimal CLUE is more complicated than finding an optimal linear unbiased estimator in the classical version of the problem. To simplify the problem, a CLUE that is optimal under certain restrictions will also be investigated. The latter is named restricted best CLUE. An important result is a theorem that gives a closed form solution to a restricted best CLUE. Furthermore, several conservative estimation methods are described followed by an analysis of their properties. The methods are shown to be conservative and optimal under different assumptions about the underlying correlations. The second part of the thesis focuses on practical aspects of the conservative approach to decentralized estimation in configurations where the communication channel is constrained. The diagonal covariance approximation is proposed as a data reduction technique that complies with the communication constraints and if handled correctly can be shown to preserve conservative estimates. Several information selection methods are derived that can reduce the amount of data being transmitted in the communication channel. Using the information selection methods it is possible to decide what information other actors of the sensor network find useful.
Publisher: Linköping University Electronic Press
ISBN: 9179297242
Category :
Languages : en
Pages : 110
Book Description
Sensor networks consist of sensors (e.g., radar and cameras) and processing units (e.g., estimators), where in the former information extraction occurs and in the latter estimates are formed. In decentralized estimation information extracted by sensors has been pre-processed at an intermediate processing unit prior to arriving at an estimator. Pre-processing of information allows for the complexity of large systems and systems-of-systems to be significantly reduced, and also makes the sensor network robust and flexible. One of the main disadvantages of pre-processing information is that information becomes correlated. These correlations, if not handled carefully, potentially lead to underestimated uncertainties about the calculated estimates. In conservative estimation the unknown correlations are handled by ensuring that the uncertainty about an estimate is not underestimated. If this is ensured the estimate is said to be conservative. Neglecting correlations means information is double counted which in worst case implies diverging estimates with fatal consequences. While ensuring conservative estimates is the main goal, it is desirable for a conservative estimator, as for any estimator, to provide an error covariance which is as small as possible. Application areas where conservative estimation is relevant are setups where multiple agents cooperate to accomplish a common objective, e.g., target tracking, surveillance and air policing. The first part of this thesis deals with theoretical matters where the conservative linear unbiased estimation problem is formalized. This part proposes an extension of classical linear estimation theory to the conservative estimation problem. The conservative linear unbiased estimator (CLUE) is suggested as a robust and practical alternative for estimation problems where the correlations are unknown. Optimality criteria for the CLUE are provided and further investigated. It is shown that finding an optimal CLUE is more complicated than finding an optimal linear unbiased estimator in the classical version of the problem. To simplify the problem, a CLUE that is optimal under certain restrictions will also be investigated. The latter is named restricted best CLUE. An important result is a theorem that gives a closed form solution to a restricted best CLUE. Furthermore, several conservative estimation methods are described followed by an analysis of their properties. The methods are shown to be conservative and optimal under different assumptions about the underlying correlations. The second part of the thesis focuses on practical aspects of the conservative approach to decentralized estimation in configurations where the communication channel is constrained. The diagonal covariance approximation is proposed as a data reduction technique that complies with the communication constraints and if handled correctly can be shown to preserve conservative estimates. Several information selection methods are derived that can reduce the amount of data being transmitted in the communication channel. Using the information selection methods it is possible to decide what information other actors of the sensor network find useful.
Design and Analysis of Control Systems
Author: Arthur G.O. Mutambara
Publisher: CRC Press
ISBN: 1003858619
Category : Technology & Engineering
Languages : en
Pages : 795
Book Description
Written to inspire and cultivate the ability to design and analyse feasible control algorithms for a wide range of engineering applications, this comprehensive text covers the theoretical and practical principles involved in the design and analysis of control systems. This second edition introduces 4IR adoption strategies for traditional intelligent control, including new techniques of implementing control systems. It provides improved coverage of the characteristics of feedback control, root-locus analysis, frequency-response analysis, state space methods, digital control systems and advanced controls, including updated worked examples and problems. Features: Describes very timely applications and contains a good mix of theory, application, and computer simulation. Covers all the fundamentals of control systems. Takes a transdisciplinary and cross-disciplinary approach. Explores updates for 4IR (Industry 4.0) and includes better experiments and illustrations for nonlinear control systems. Includes homework problems, case studies, examples, and a solutions manual. This book is aimed at senior undergraduate and graduate students, professional engineers and academic researchers, in interrelated engineering disciplines such as electrical, mechanical, aerospace, mechatronics, robotics and other AI-based systems.
Publisher: CRC Press
ISBN: 1003858619
Category : Technology & Engineering
Languages : en
Pages : 795
Book Description
Written to inspire and cultivate the ability to design and analyse feasible control algorithms for a wide range of engineering applications, this comprehensive text covers the theoretical and practical principles involved in the design and analysis of control systems. This second edition introduces 4IR adoption strategies for traditional intelligent control, including new techniques of implementing control systems. It provides improved coverage of the characteristics of feedback control, root-locus analysis, frequency-response analysis, state space methods, digital control systems and advanced controls, including updated worked examples and problems. Features: Describes very timely applications and contains a good mix of theory, application, and computer simulation. Covers all the fundamentals of control systems. Takes a transdisciplinary and cross-disciplinary approach. Explores updates for 4IR (Industry 4.0) and includes better experiments and illustrations for nonlinear control systems. Includes homework problems, case studies, examples, and a solutions manual. This book is aimed at senior undergraduate and graduate students, professional engineers and academic researchers, in interrelated engineering disciplines such as electrical, mechanical, aerospace, mechatronics, robotics and other AI-based systems.
Advances in Guidance, Navigation and Control
Author: Liang Yan
Publisher: Springer Nature
ISBN: 981158155X
Category : Technology & Engineering
Languages : en
Pages : 5416
Book Description
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
Publisher: Springer Nature
ISBN: 981158155X
Category : Technology & Engineering
Languages : en
Pages : 5416
Book Description
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
Sensing and Control for Autonomous Vehicles
Author: Thor I. Fossen
Publisher: Springer
ISBN: 3319553720
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
Publisher: Springer
ISBN: 3319553720
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
Integrated Tracking, Classification, and Sensor Management
Author: Mahendra Mallick
Publisher: John Wiley & Sons
ISBN: 0470639059
Category : Technology & Engineering
Languages : en
Pages : 738
Book Description
A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
Publisher: John Wiley & Sons
ISBN: 0470639059
Category : Technology & Engineering
Languages : en
Pages : 738
Book Description
A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
Multisensor Fusion
Author: Rajive Joshi
Publisher: World Scientific
ISBN: 9789810238803
Category : Science
Languages : en
Pages : 340
Book Description
The fusion of information from sensors with different physical characteristics, such as sight, touch, sound, etc., enhances the understanding of our surroundings and provides the basis for planning, decision-making, and control of autonomous and intelligent machines. The minimal representation approach to multisensor fusion is based on the use of an information measure as a universal yardstick for fusion. Using models of sensor uncertainty, the representation size guides the integration of widely varying types of data and maximizes the information contributed to a consistent interpretation. In this book, the general theory of minimal representation multisensor fusion is developed and applied in a series of experimental studies of sensor-based robot manipulation. A novel application of differential evolutionary computation is introduced to achieve practical and effective solutions to this difficult computational problem.
Publisher: World Scientific
ISBN: 9789810238803
Category : Science
Languages : en
Pages : 340
Book Description
The fusion of information from sensors with different physical characteristics, such as sight, touch, sound, etc., enhances the understanding of our surroundings and provides the basis for planning, decision-making, and control of autonomous and intelligent machines. The minimal representation approach to multisensor fusion is based on the use of an information measure as a universal yardstick for fusion. Using models of sensor uncertainty, the representation size guides the integration of widely varying types of data and maximizes the information contributed to a consistent interpretation. In this book, the general theory of minimal representation multisensor fusion is developed and applied in a series of experimental studies of sensor-based robot manipulation. A novel application of differential evolutionary computation is introduced to achieve practical and effective solutions to this difficult computational problem.
Multisensor Data Fusion
Author: Hassen Fourati
Publisher: CRC Press
ISBN: 1351830880
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.
Publisher: CRC Press
ISBN: 1351830880
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.
Advances in Parallel & Distributed Processing, and Applications
Author: Hamid R. Arabnia
Publisher: Springer Nature
ISBN: 3030699846
Category : Technology & Engineering
Languages : en
Pages : 1201
Book Description
The book presents the proceedings of four conferences: The 26th International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'20), The 18th International Conference on Scientific Computing (CSC'20); The 17th International Conference on Modeling, Simulation and Visualization Methods (MSV'20); and The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the research tracks Parallel and Distributed Processing, Scientific Computing, Modeling, Simulation and Visualization, and Grid, Cloud, and Cluster Computing; Features papers from PDPTA’20, CSC’20, MSV’20, and GCC’20.
Publisher: Springer Nature
ISBN: 3030699846
Category : Technology & Engineering
Languages : en
Pages : 1201
Book Description
The book presents the proceedings of four conferences: The 26th International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'20), The 18th International Conference on Scientific Computing (CSC'20); The 17th International Conference on Modeling, Simulation and Visualization Methods (MSV'20); and The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the research tracks Parallel and Distributed Processing, Scientific Computing, Modeling, Simulation and Visualization, and Grid, Cloud, and Cluster Computing; Features papers from PDPTA’20, CSC’20, MSV’20, and GCC’20.