Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Spark: The Definitive Guide
Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Learning Spark
Author: Jules S. Damji
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400
Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400
Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Databricks Certified Associate Developer for Apache Spark Using Python
Author: Saba Shah
Publisher: Packt Publishing Ltd
ISBN: 1804616206
Category : Computers
Languages : en
Pages : 274
Book Description
Learn the concepts and exercises needed to confidently prepare for the Databricks Associate Developer for Apache Spark 3.0 exam and validate your Spark skills with an industry-recognized credential Key Features Understand the fundamentals of Apache Spark to design robust and fast Spark applications Explore various data manipulation components for each phase of your data engineering project Prepare for the certification exam with sample questions and mock exams Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionSpark has become a de facto standard for big data processing. Migrating data processing to Spark saves resources, streamlines your business focus, and modernizes workloads, creating new business opportunities through Spark’s advanced capabilities. Written by a senior solutions architect at Databricks, with experience in leading data science and data engineering teams in Fortune 500s as well as startups, this book is your exhaustive guide to achieving the Databricks Certified Associate Developer for Apache Spark certification on your first attempt. You’ll explore the core components of Apache Spark, its architecture, and its optimization, while familiarizing yourself with the Spark DataFrame API and its components needed for data manipulation. You’ll also find out what Spark streaming is and why it’s important for modern data stacks, before learning about machine learning in Spark and its different use cases. What’s more, you’ll discover sample questions at the end of each section along with two mock exams to help you prepare for the certification exam. By the end of this book, you’ll know what to expect in the exam and gain enough understanding of Spark and its tools to pass the exam. You’ll also be able to apply this knowledge in a real-world setting and take your skillset to the next level.What you will learn Create and manipulate SQL queries in Apache Spark Build complex Spark functions using Spark's user-defined functions (UDFs) Architect big data apps with Spark fundamentals for optimal design Apply techniques to manipulate and optimize big data applications Develop real-time or near-real-time applications using Spark Streaming Work with Apache Spark for machine learning applications Who this book is for This book is for data professionals such as data engineers, data analysts, BI developers, and data scientists looking for a comprehensive resource to achieve Databricks Certified Associate Developer certification, as well as for individuals who want to venture into the world of big data and data engineering. Although working knowledge of Python is required, no prior knowledge of Spark is necessary. Additionally, experience with Pyspark will be beneficial.
Publisher: Packt Publishing Ltd
ISBN: 1804616206
Category : Computers
Languages : en
Pages : 274
Book Description
Learn the concepts and exercises needed to confidently prepare for the Databricks Associate Developer for Apache Spark 3.0 exam and validate your Spark skills with an industry-recognized credential Key Features Understand the fundamentals of Apache Spark to design robust and fast Spark applications Explore various data manipulation components for each phase of your data engineering project Prepare for the certification exam with sample questions and mock exams Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionSpark has become a de facto standard for big data processing. Migrating data processing to Spark saves resources, streamlines your business focus, and modernizes workloads, creating new business opportunities through Spark’s advanced capabilities. Written by a senior solutions architect at Databricks, with experience in leading data science and data engineering teams in Fortune 500s as well as startups, this book is your exhaustive guide to achieving the Databricks Certified Associate Developer for Apache Spark certification on your first attempt. You’ll explore the core components of Apache Spark, its architecture, and its optimization, while familiarizing yourself with the Spark DataFrame API and its components needed for data manipulation. You’ll also find out what Spark streaming is and why it’s important for modern data stacks, before learning about machine learning in Spark and its different use cases. What’s more, you’ll discover sample questions at the end of each section along with two mock exams to help you prepare for the certification exam. By the end of this book, you’ll know what to expect in the exam and gain enough understanding of Spark and its tools to pass the exam. You’ll also be able to apply this knowledge in a real-world setting and take your skillset to the next level.What you will learn Create and manipulate SQL queries in Apache Spark Build complex Spark functions using Spark's user-defined functions (UDFs) Architect big data apps with Spark fundamentals for optimal design Apply techniques to manipulate and optimize big data applications Develop real-time or near-real-time applications using Spark Streaming Work with Apache Spark for machine learning applications Who this book is for This book is for data professionals such as data engineers, data analysts, BI developers, and data scientists looking for a comprehensive resource to achieve Databricks Certified Associate Developer certification, as well as for individuals who want to venture into the world of big data and data engineering. Although working knowledge of Python is required, no prior knowledge of Spark is necessary. Additionally, experience with Pyspark will be beneficial.
Frank Kane's Taming Big Data with Apache Spark and Python
Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787288307
Category : Computers
Languages : en
Pages : 289
Book Description
Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
Publisher: Packt Publishing Ltd
ISBN: 1787288307
Category : Computers
Languages : en
Pages : 289
Book Description
Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
Learning PySpark
Author: Tomasz Drabas
Publisher: Packt Publishing Ltd
ISBN: 1786466252
Category : Computers
Languages : en
Pages : 273
Book Description
Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.
Publisher: Packt Publishing Ltd
ISBN: 1786466252
Category : Computers
Languages : en
Pages : 273
Book Description
Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.
Apache Superset Quick Start Guide
Author: Shashank Shekhar
Publisher: Packt Publishing Ltd
ISBN: 1788999568
Category : Computers
Languages : en
Pages : 184
Book Description
Integrate open source data analytics and build business intelligence on SQL databases with Apache Superset. The quick, intuitive nature for data visualization in a web application makes it easy for creating interactive dashboards. Key FeaturesWork with Apache Superset's rich set of data visualizationsCreate interactive dashboards and data storytellingEasily explore dataBook Description Apache Superset is a modern, open source, enterprise-ready business intelligence (BI) web application. With the help of this book, you will see how Superset integrates with popular databases like Postgres, Google BigQuery, Snowflake, and MySQL. You will learn to create real time data visualizations and dashboards on modern web browsers for your organization using Superset. First, we look at the fundamentals of Superset, and then get it up and running. You'll go through the requisite installation, configuration, and deployment. Then, we will discuss different columnar data types, analytics, and the visualizations available. You'll also see the security tools available to the administrator to keep your data safe. You will learn how to visualize relationships as graphs instead of coordinates on plain orthogonal axes. This will help you when you upload your own entity relationship dataset and analyze the dataset in new, different ways. You will also see how to analyze geographical regions by working with location data. Finally, we cover a set of tutorials on dashboard designs frequently used by analysts, business intelligence professionals, and developers. What you will learnGet to grips with the fundamentals of data exploration using SupersetSet up a working instance of Superset on cloud services like Google Compute EngineIntegrate Superset with SQL databasesBuild dashboards with SupersetCalculate statistics in Superset for numerical, categorical, or text dataUnderstand visualization techniques, filtering, and grouping by aggregationManage user roles and permissions in SupersetWork with SQL LabWho this book is for This book is for data analysts, BI professionals, and developers who want to learn Apache Superset. If you want to create interactive dashboards from SQL databases, this book is what you need. Working knowledge of Python will be an advantage but not necessary to understand this book.
Publisher: Packt Publishing Ltd
ISBN: 1788999568
Category : Computers
Languages : en
Pages : 184
Book Description
Integrate open source data analytics and build business intelligence on SQL databases with Apache Superset. The quick, intuitive nature for data visualization in a web application makes it easy for creating interactive dashboards. Key FeaturesWork with Apache Superset's rich set of data visualizationsCreate interactive dashboards and data storytellingEasily explore dataBook Description Apache Superset is a modern, open source, enterprise-ready business intelligence (BI) web application. With the help of this book, you will see how Superset integrates with popular databases like Postgres, Google BigQuery, Snowflake, and MySQL. You will learn to create real time data visualizations and dashboards on modern web browsers for your organization using Superset. First, we look at the fundamentals of Superset, and then get it up and running. You'll go through the requisite installation, configuration, and deployment. Then, we will discuss different columnar data types, analytics, and the visualizations available. You'll also see the security tools available to the administrator to keep your data safe. You will learn how to visualize relationships as graphs instead of coordinates on plain orthogonal axes. This will help you when you upload your own entity relationship dataset and analyze the dataset in new, different ways. You will also see how to analyze geographical regions by working with location data. Finally, we cover a set of tutorials on dashboard designs frequently used by analysts, business intelligence professionals, and developers. What you will learnGet to grips with the fundamentals of data exploration using SupersetSet up a working instance of Superset on cloud services like Google Compute EngineIntegrate Superset with SQL databasesBuild dashboards with SupersetCalculate statistics in Superset for numerical, categorical, or text dataUnderstand visualization techniques, filtering, and grouping by aggregationManage user roles and permissions in SupersetWork with SQL LabWho this book is for This book is for data analysts, BI professionals, and developers who want to learn Apache Superset. If you want to create interactive dashboards from SQL databases, this book is what you need. Working knowledge of Python will be an advantage but not necessary to understand this book.
Apache Spark 2.x for Java Developers
Author: Sourav Gulati
Publisher: Packt Publishing Ltd
ISBN: 178712942X
Category : Computers
Languages : en
Pages : 338
Book Description
Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.
Publisher: Packt Publishing Ltd
ISBN: 178712942X
Category : Computers
Languages : en
Pages : 338
Book Description
Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.
Advanced Analytics with Spark
Author: Sandy Ryza
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912731
Category : Computers
Languages : en
Pages : 276
Book Description
In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912731
Category : Computers
Languages : en
Pages : 276
Book Description
In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder
Learning Spark
Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category : Computers
Languages : en
Pages : 289
Book Description
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category : Computers
Languages : en
Pages : 289
Book Description
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Guide for Databricks® Spark Scala CRT020 Certification
Author: Rashmi Shah
Publisher: HadoopExam Learning Resources
ISBN:
Category : Computers
Languages : en
Pages : 307
Book Description
Apache® Spark is one of the fastest growing technology in BigData computing world. It supports multiple programming languages like Java, Scala, Python and R. Hence, many existing and new framework started to integrate Spark platform as well in their platform e.g. Hadoop, Cassandra, EMR etc. While creating Spark certification material HadoopExam technical team found that there is no proper material and book is available for the Spark (version 2.x) which covers the concepts as well as use of various features and found difficulty in creating the material. Therefore, they decided to create full length book for Spark (Databricks® CRT020 Spark Scala/Python or PySpark Certification) and outcome of that is this book. In this book technical team try to cover both fundamental concepts of Spark 2.x topics which are part of the certification syllabus as well as add as many exercises as possible and in current version we have around 46 hands on exercises added which you can execute on the Databricks community edition, because each of this exercises tested on that platform as well, as this book is focused on the Scala version of the certification, hence all the exercises and their solution provided in the Scala. We have divided the entire book in the 13 chapters, as you move ahead chapter by chapter you would be comfortable with the Databricks Spark Scala certification (CRT020). All the exercises given in this book are written using Scala. However, concepts remain same even if you are using different programming language.
Publisher: HadoopExam Learning Resources
ISBN:
Category : Computers
Languages : en
Pages : 307
Book Description
Apache® Spark is one of the fastest growing technology in BigData computing world. It supports multiple programming languages like Java, Scala, Python and R. Hence, many existing and new framework started to integrate Spark platform as well in their platform e.g. Hadoop, Cassandra, EMR etc. While creating Spark certification material HadoopExam technical team found that there is no proper material and book is available for the Spark (version 2.x) which covers the concepts as well as use of various features and found difficulty in creating the material. Therefore, they decided to create full length book for Spark (Databricks® CRT020 Spark Scala/Python or PySpark Certification) and outcome of that is this book. In this book technical team try to cover both fundamental concepts of Spark 2.x topics which are part of the certification syllabus as well as add as many exercises as possible and in current version we have around 46 hands on exercises added which you can execute on the Databricks community edition, because each of this exercises tested on that platform as well, as this book is focused on the Scala version of the certification, hence all the exercises and their solution provided in the Scala. We have divided the entire book in the 13 chapters, as you move ahead chapter by chapter you would be comfortable with the Databricks Spark Scala certification (CRT020). All the exercises given in this book are written using Scala. However, concepts remain same even if you are using different programming language.