Author: Rick van der Lans
Publisher: Elsevier
ISBN: 0123944252
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
Data Virtualization for Business Intelligence Systems
Author: Rick van der Lans
Publisher: Elsevier
ISBN: 0123944252
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
Publisher: Elsevier
ISBN: 0123944252
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
Data Virtualization for Business Intelligence Systems
Author: Rick van der Lans
Publisher: Elsevier
ISBN: 0123978173
Category : Computers
Languages : en
Pages : 296
Book Description
Data virtualization can help you accomplish your goals with more flexibility and agility. Learn what it is and how and why it should be used with Data Virtualization for Business Intelligence Systems. In this book, expert author Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects. You'll learn the difference is between this new form of data integration and older forms, such as ETL and replication, and gain a clear understanding of how data virtualization really works. Data Virtualization for Business Intelligence Systems outlines the advantages and disadvantages of data virtualization and illustrates how data virtualization should be applied in data warehouse environments. You'll come away with a comprehensive understanding of how data virtualization will make data warehouse environments more flexible and how it make developing operational BI applications easier. Van der Lans also describes the relationship between data virtualization and related topics, such as master data management, governance, and information management, so you come away with a big-picture understanding as well as all the practical know-how you need to virtualize your data. - First independent book on data virtualization that explains in a product-independent way how data virtualization technology works. - Illustrates concepts using examples developed with commercially available products. - Shows you how to solve common data integration challenges such as data quality, system interference, and overall performance by following practical guidelines on using data virtualization. - Apply data virtualization right away with three chapters full of practical implementation guidance. - Understand the big picture of data virtualization and its relationship with data governance and information management.
Publisher: Elsevier
ISBN: 0123978173
Category : Computers
Languages : en
Pages : 296
Book Description
Data virtualization can help you accomplish your goals with more flexibility and agility. Learn what it is and how and why it should be used with Data Virtualization for Business Intelligence Systems. In this book, expert author Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects. You'll learn the difference is between this new form of data integration and older forms, such as ETL and replication, and gain a clear understanding of how data virtualization really works. Data Virtualization for Business Intelligence Systems outlines the advantages and disadvantages of data virtualization and illustrates how data virtualization should be applied in data warehouse environments. You'll come away with a comprehensive understanding of how data virtualization will make data warehouse environments more flexible and how it make developing operational BI applications easier. Van der Lans also describes the relationship between data virtualization and related topics, such as master data management, governance, and information management, so you come away with a big-picture understanding as well as all the practical know-how you need to virtualize your data. - First independent book on data virtualization that explains in a product-independent way how data virtualization technology works. - Illustrates concepts using examples developed with commercially available products. - Shows you how to solve common data integration challenges such as data quality, system interference, and overall performance by following practical guidelines on using data virtualization. - Apply data virtualization right away with three chapters full of practical implementation guidance. - Understand the big picture of data virtualization and its relationship with data governance and information management.
Agile Analytics
Author: Ken Collier
Publisher: Addison-Wesley
ISBN: 032150481X
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
Publisher: Addison-Wesley
ISBN: 032150481X
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
Managing Data in Motion
Author: April Reeve
Publisher: Newnes
ISBN: 0123977916
Category : Computers
Languages : en
Pages : 203
Book Description
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"
Publisher: Newnes
ISBN: 0123977916
Category : Computers
Languages : en
Pages : 203
Book Description
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"
Data Virtualization
Author: Judith R. Davis
Publisher:
ISBN: 9780979930423
Category : Data flow computing
Languages : en
Pages : 201
Book Description
Publisher:
ISBN: 9780979930423
Category : Data flow computing
Languages : en
Pages : 201
Book Description
Accelerating Digital Transformation on Z Using Data Virtualization
Author: Blanca Borden
Publisher: IBM Redbooks
ISBN: 0738457299
Category : Computers
Languages : en
Pages : 38
Book Description
This IBM® RedpaperTM publication introduces a new data virtualization capability that enables IBM z/OS® data to be combined with other enterprise data sources in real-time, which allows applications to access any live enterprise data anytime and use the power and efficiencies of the IBM Z® platform. Modern businesses need actionable and timely insight from current data. They cannot afford the time that is necessary to copy and transform data. They also cannot afford to secure and protect each copy of personally identifiable information and corporate intellectual property. Data virtualization enables direct connections to be established between multiple data sources and the applications that process the data. Transformations can be applied, in line, to enable real-time access to data, which opens up many new ways to gain business insight with less IT infrastructure necessary to achieve those goals. Data virtualization can become the backbone for advanced analytics and modern applications. The IBM Data Virtualization Manager for z/OS (DVM) can be used as a stand-alone product or as a utility that is used by other products. Its goal is to enable access to live mainframe transaction data and make it usable by any application. This enables customers to use the strengths of mainframe processing with new agile applications. Additionally, its modern development environment and code-generating capabilities enable any developer to update, access, and combine mainframe data easily by using modern APIs and languages. If data is the foundation for building new insights, IBM DVM is a key tool for providing easy, cost-efficient access to that foundation.
Publisher: IBM Redbooks
ISBN: 0738457299
Category : Computers
Languages : en
Pages : 38
Book Description
This IBM® RedpaperTM publication introduces a new data virtualization capability that enables IBM z/OS® data to be combined with other enterprise data sources in real-time, which allows applications to access any live enterprise data anytime and use the power and efficiencies of the IBM Z® platform. Modern businesses need actionable and timely insight from current data. They cannot afford the time that is necessary to copy and transform data. They also cannot afford to secure and protect each copy of personally identifiable information and corporate intellectual property. Data virtualization enables direct connections to be established between multiple data sources and the applications that process the data. Transformations can be applied, in line, to enable real-time access to data, which opens up many new ways to gain business insight with less IT infrastructure necessary to achieve those goals. Data virtualization can become the backbone for advanced analytics and modern applications. The IBM Data Virtualization Manager for z/OS (DVM) can be used as a stand-alone product or as a utility that is used by other products. Its goal is to enable access to live mainframe transaction data and make it usable by any application. This enables customers to use the strengths of mainframe processing with new agile applications. Additionally, its modern development environment and code-generating capabilities enable any developer to update, access, and combine mainframe data easily by using modern APIs and languages. If data is the foundation for building new insights, IBM DVM is a key tool for providing easy, cost-efficient access to that foundation.
Big Data Analytics for Sustainable Computing
Author: Haldorai, Anandakumar
Publisher: IGI Global
ISBN: 1522597522
Category : Computers
Languages : en
Pages : 285
Book Description
Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.
Publisher: IGI Global
ISBN: 1522597522
Category : Computers
Languages : en
Pages : 285
Book Description
Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.
Business Intelligence
Author: David Loshin
Publisher: Newnes
ISBN: 0123858909
Category : Computers
Languages : en
Pages : 401
Book Description
Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
Publisher: Newnes
ISBN: 0123858909
Category : Computers
Languages : en
Pages : 401
Book Description
Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
Blade Servers and Virtualization
Author: Barb Goldworm
Publisher: John Wiley & Sons
ISBN: 0470139552
Category : Computers
Languages : en
Pages : 410
Book Description
Blade server systems and virtualization are key building blocks for Next Generation Enterprise Data centers Blades offer modular, pre-wired, ultra high-density servers (up to 10x traditional servers) with shared components (power, cooling, switches) – reducing complexity and cost, and improving flexibility, availability, manageability, and maintainability Virtualization enables consolidation of physical servers by allowing many virtual servers to run concurrently on one physical server – improving system utilization, reducing the total number of physical servers, reducing costs, and increasing flexibility This is the first book covering these complementary technologies and how, together, they provide a strong foundation for the future It examines the history, architectures, features, examples, and user case studies of blade systems and virtualization, and offers guidance and considerations for how to evaluate and implement solutions
Publisher: John Wiley & Sons
ISBN: 0470139552
Category : Computers
Languages : en
Pages : 410
Book Description
Blade server systems and virtualization are key building blocks for Next Generation Enterprise Data centers Blades offer modular, pre-wired, ultra high-density servers (up to 10x traditional servers) with shared components (power, cooling, switches) – reducing complexity and cost, and improving flexibility, availability, manageability, and maintainability Virtualization enables consolidation of physical servers by allowing many virtual servers to run concurrently on one physical server – improving system utilization, reducing the total number of physical servers, reducing costs, and increasing flexibility This is the first book covering these complementary technologies and how, together, they provide a strong foundation for the future It examines the history, architectures, features, examples, and user case studies of blade systems and virtualization, and offers guidance and considerations for how to evaluate and implement solutions
Adaptive Business Intelligence
Author: Zbigniew Michalewicz
Publisher: Springer Science & Business Media
ISBN: 3540329293
Category : Computers
Languages : en
Pages : 249
Book Description
Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address fundamental questions: What is likely to happen in the future? What is the best course of action? Adaptive Business Intelligence explores elements of data mining, predictive modeling, forecasting, optimization, and adaptability. The book explains the application of numerous prediction and optimization techniques, and shows how these concepts can be used to develop adaptive systems. Coverage includes linear regression, time-series forecasting, decision trees and tables, artificial neural networks, genetic programming, fuzzy systems, genetic algorithms, simulated annealing, tabu search, ant systems, and agent-based modeling.
Publisher: Springer Science & Business Media
ISBN: 3540329293
Category : Computers
Languages : en
Pages : 249
Book Description
Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address fundamental questions: What is likely to happen in the future? What is the best course of action? Adaptive Business Intelligence explores elements of data mining, predictive modeling, forecasting, optimization, and adaptability. The book explains the application of numerous prediction and optimization techniques, and shows how these concepts can be used to develop adaptive systems. Coverage includes linear regression, time-series forecasting, decision trees and tables, artificial neural networks, genetic programming, fuzzy systems, genetic algorithms, simulated annealing, tabu search, ant systems, and agent-based modeling.