Data Science in Engineering, Volume 9

Data Science in Engineering, Volume 9 PDF Author: Ramin Madarshahian
Publisher: Springer Nature
ISBN: 3030760049
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Data Science and Engineering Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Data Science in Engineering Applications Engineering Mathematics Computational Methods in Engineering

Data Science in Engineering, Volume 9

Data Science in Engineering, Volume 9 PDF Author: Ramin Madarshahian
Publisher: Springer Nature
ISBN: 3030760049
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Data Science and Engineering Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Data Science in Engineering Applications Engineering Mathematics Computational Methods in Engineering

Data Science in Engineering, Volume 10

Data Science in Engineering, Volume 10 PDF Author: Ramin Madarshahian
Publisher: Springer Nature
ISBN: 3031349466
Category : Computers
Languages : en
Pages : 185

Get Book Here

Book Description
Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics

Data Science in Engineering

Data Science in Engineering PDF Author: Thomas Matarazzo
Publisher: Springer Nature
ISBN: 3031681428
Category : Electronic books
Languages : en
Pages : 141

Get Book Here

Book Description
Data Science in Engineering, Volume 10: Proceedings of the 42nd IMAC, A Conference and Exposition on Structural Dynamics, 2024, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection Data-driven System Prognostics.

Data Science in Engineering and Management

Data Science in Engineering and Management PDF Author: Zdzislaw Polkowski
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159

Get Book Here

Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Emotional Engineering, Vol. 9

Emotional Engineering, Vol. 9 PDF Author: Shuichi Fukuda
Publisher: Springer Nature
ISBN: 3031058674
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book Here

Book Description
This is the latest volume in the series of Springer titles on emotional engineering tracking the development of this field. Engineering has been based on the Euclidean space approach and it was numerical data-centric. In short, our engineering up to now has been control-based, i.e., on tactics and problem solving. When we realize AI consumes 10,000 times more energy than human brain, we understand how it is better to use 10,000 people’s minds. But current society is industrial society. The industrial revolution introduced division of labour and we started to work for others. But the tremendous consumption of energy indicates that we need to move toward another society. If we can make the next society a self-Satisfying society (SSS) and create a new sustainable society with greater mental wellbeing then many emerging problems will be solved and we can enjoy our lives better. Emotional engineering engages with this challenge.

Big Data, Data Mining and Data Science

Big Data, Data Mining and Data Science PDF Author: George Dimitoglou
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311134455X
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Through the application of cutting-edge techniques like Big Data, Data Mining, and Data Science, it is possible to extract insights from massive datasets. These methodologies are crucial in enabling informed decision-making and driving transformative advancements across many fields, industries, and domains. This book offers an overview of latest tools, methods and approaches while also highlighting their practical use through various applications and case studies.

Data Science and Machine Learning

Data Science and Machine Learning PDF Author: Dirk P. Kroese
Publisher: CRC Press
ISBN: 1000730778
Category : Business & Economics
Languages : en
Pages : 538

Get Book Here

Book Description
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Cross Reality and Data Science in Engineering

Cross Reality and Data Science in Engineering PDF Author: Michael E. Auer
Publisher: Springer Nature
ISBN: 3030525759
Category : Computers
Languages : en
Pages : 1043

Get Book Here

Book Description
Today, online technologies are at the core of most fields of engineering and society as a whole . This book discusses the fundamentals, applications and lessons learned in the field of online and remote engineering, virtual instrumentation, and other related technologies like Cross Reality, Data Science & Big Data, Internet of Things & Industrial Internet of Things, Industry 4.0, Cyber Security, and M2M & Smart Objects. Since the first Remote Engineering and Virtual Instrumentation (REV) conference in 2004, the event has focused on the use of the Internet for engineering tasks, as well as the related opportunities and challenges. In a globally connected world, interest in online collaboration, teleworking, remote services, and other digital working environments is rapidly increasing. In this context, the REV conferences discuss fundamentals, applications and experiences in the field of Online and Remote Engineering as well as Virtual Instrumentation. Furthermore, the conferences focus on guidelines and new concepts for engineering education in higher and vocational education institutions, including emerging technologies in learning, MOOCs & MOOLs, and open resources. This book presents the proceedings of REV2020 on “Cross Reality and Data Science in Engineering” which was held as the 17th in series of annual events. It was organized in cooperation with the Engineering Education Transformations Institute and the Georgia Informatics Institutes for Research and Education and was held at the College of Engineering at the University of Georgia in Athens (GA), USA, from February 26 to 28, 2020.

Data Engineering and Data Science

Data Engineering and Data Science PDF Author: Kukatlapalli Pradeep Kumar
Publisher: John Wiley & Sons
ISBN: 1119841976
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.