Author: Zdzislaw Polkowski
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
Data Science in Engineering and Management
Author: Zdzislaw Polkowski
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
Data Analytics for Engineering and Construction Project Risk Management
Author: Ivan Damnjanovic
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
Perspectives on Data Science for Software Engineering
Author: Tim Menzies
Publisher: Morgan Kaufmann
ISBN: 0128042613
Category : Computers
Languages : en
Pages : 410
Book Description
Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains
Publisher: Morgan Kaufmann
ISBN: 0128042613
Category : Computers
Languages : en
Pages : 410
Book Description
Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Engineering and Management of Data Centers
Author: Jorge Marx Gómez
Publisher: Springer
ISBN: 3319650823
Category : Computers
Languages : en
Pages : 290
Book Description
This edited volume covers essential and recent development in the engineering and management of data centers. Data centers are complex systems requiring ongoing support, and their high value for keeping business continuity operations is crucial. The book presents core topics on the planning, design, implementation, operation and control, and sustainability of a data center from a didactical and practitioner viewpoint. Chapters include: · Foundations of data centers: Key Concepts and Taxonomies · ITSDM: A Methodology for IT Services Design · Managing Risks on Data Centers through Dashboards · Risk Analysis in Data Center Disaster Recovery Plans · Best practices in Data Center Management Case: KIO Networks · QoS in NaaS (Network as a Service) using Software Defined Networking · Optimization of Data Center Fault-Tolerance Design · Energetic Data Centre Design Considering Energy Efficiency Improvements During Operation · Demand-side Flexibility and Supply-side Management: The Use Case of Data Centers and Energy Utilities · DevOps: Foundations and its Utilization in Data Centers · Sustainable and Resilient Network Infrastructure Design for Cloud Data Centres · Application Software in Cloud-Ready Data Centers This book bridges the gap between academia and the industry, offering essential reading for practitioners in data centers, researchers in the area, and faculty teaching related courses on data centers. The book can be used as a complementary text for traditional courses on Computer Networks, as well as innovative courses on IT Architecture, IT Service Management, IT Operations, and Data Centers.
Publisher: Springer
ISBN: 3319650823
Category : Computers
Languages : en
Pages : 290
Book Description
This edited volume covers essential and recent development in the engineering and management of data centers. Data centers are complex systems requiring ongoing support, and their high value for keeping business continuity operations is crucial. The book presents core topics on the planning, design, implementation, operation and control, and sustainability of a data center from a didactical and practitioner viewpoint. Chapters include: · Foundations of data centers: Key Concepts and Taxonomies · ITSDM: A Methodology for IT Services Design · Managing Risks on Data Centers through Dashboards · Risk Analysis in Data Center Disaster Recovery Plans · Best practices in Data Center Management Case: KIO Networks · QoS in NaaS (Network as a Service) using Software Defined Networking · Optimization of Data Center Fault-Tolerance Design · Energetic Data Centre Design Considering Energy Efficiency Improvements During Operation · Demand-side Flexibility and Supply-side Management: The Use Case of Data Centers and Energy Utilities · DevOps: Foundations and its Utilization in Data Centers · Sustainable and Resilient Network Infrastructure Design for Cloud Data Centres · Application Software in Cloud-Ready Data Centers This book bridges the gap between academia and the industry, offering essential reading for practitioners in data centers, researchers in the area, and faculty teaching related courses on data centers. The book can be used as a complementary text for traditional courses on Computer Networks, as well as innovative courses on IT Architecture, IT Service Management, IT Operations, and Data Centers.
Data Science and Digital Business
Author: Fausto Pedro García Márquez
Publisher: Springer
ISBN: 3319956515
Category : Business & Economics
Languages : en
Pages : 319
Book Description
This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
Publisher: Springer
ISBN: 3319956515
Category : Business & Economics
Languages : en
Pages : 319
Book Description
This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
Data Science for Undergraduates
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139
Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139
Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
Engineering Analytics
Author: Luis Rabelo
Publisher: CRC Press
ISBN: 1000453758
Category : Business & Economics
Languages : en
Pages : 283
Book Description
Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.
Publisher: CRC Press
ISBN: 1000453758
Category : Business & Economics
Languages : en
Pages : 283
Book Description
Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.
Robust Quality
Author: Rajesh Jugulum
Publisher: CRC Press
ISBN: 0429877269
Category : Business & Economics
Languages : en
Pages : 120
Book Description
Historically, the term quality was used to measure performance in the context of products, processes and systems. With rapid growth in data and its usage, data quality is becoming quite important. It is important to connect these two aspects of quality to ensure better performance. This book provides a strong connection between the concepts in data science and process engineering that is necessary to ensure better quality levels and takes you through a systematic approach to measure holistic quality with several case studies. Features: Integrates data science, analytics and process engineering concepts Discusses how to create value by considering data, analytics and processes Examines metrics management technique that will help evaluate performance levels of processes, systems and models, including AI and machine learning approaches Reviews a structured approach for analytics execution
Publisher: CRC Press
ISBN: 0429877269
Category : Business & Economics
Languages : en
Pages : 120
Book Description
Historically, the term quality was used to measure performance in the context of products, processes and systems. With rapid growth in data and its usage, data quality is becoming quite important. It is important to connect these two aspects of quality to ensure better performance. This book provides a strong connection between the concepts in data science and process engineering that is necessary to ensure better quality levels and takes you through a systematic approach to measure holistic quality with several case studies. Features: Integrates data science, analytics and process engineering concepts Discusses how to create value by considering data, analytics and processes Examines metrics management technique that will help evaluate performance levels of processes, systems and models, including AI and machine learning approaches Reviews a structured approach for analytics execution
Proceedings of the Fourteenth International Conference on Management Science and Engineering Management
Author: Jiuping Xu
Publisher: Springer Nature
ISBN: 3030498891
Category : Technology & Engineering
Languages : en
Pages : 831
Book Description
This book gathers the proceedings of the 14th International Conference on Management Science and Engineering Management (ICMSEM 2020). Held at the Academy of Studies of Moldova from July 30 to August 2, 2020, the conference provided a platform for researchers and practitioners in the field to share their ideas and experiences. Covering a wide range of topics, including hot management issues in engineering science, the book presents novel ideas and the latest research advances in the area of management science and engineering management. It includes both theoretical and practical studies of management science applied in computing methodology, highlighting advanced management concepts, and computing technologies for decision-making problems involving large, uncertain and unstructured data. The book also describes the changes and challenges relating to decision-making procedures at the dawn of the big data era, and discusses new technologies for analysis, capture, search, sharing, storage, transfer and visualization, as well as advances in the integration of optimization, statistics and data mining. Given its scope, it will appeal to a wide readership, particularly those looking for new ideas and research directions.
Publisher: Springer Nature
ISBN: 3030498891
Category : Technology & Engineering
Languages : en
Pages : 831
Book Description
This book gathers the proceedings of the 14th International Conference on Management Science and Engineering Management (ICMSEM 2020). Held at the Academy of Studies of Moldova from July 30 to August 2, 2020, the conference provided a platform for researchers and practitioners in the field to share their ideas and experiences. Covering a wide range of topics, including hot management issues in engineering science, the book presents novel ideas and the latest research advances in the area of management science and engineering management. It includes both theoretical and practical studies of management science applied in computing methodology, highlighting advanced management concepts, and computing technologies for decision-making problems involving large, uncertain and unstructured data. The book also describes the changes and challenges relating to decision-making procedures at the dawn of the big data era, and discusses new technologies for analysis, capture, search, sharing, storage, transfer and visualization, as well as advances in the integration of optimization, statistics and data mining. Given its scope, it will appeal to a wide readership, particularly those looking for new ideas and research directions.