ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB

ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB PDF Author: CESAR PERZ LOPEZ
Publisher: SCIENTIFIC BOOKS
ISBN:
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
Artificial Intelligence combines mathematical algorithms and techniques from Machine Learning, Deep Learning and Big Data to extract the knowledge contained in the data and present it in an understandable and automatic way. Neural networks and their applications are a fundamental tool to develop work in Artificial Intelligence. On the other hand, unsupervised learning is more closely aligned with Artificial Intelligence as it gives the idea that a machine can learn to identify complex processes and patterns without the need for a human to provide guidance and supervision throughout the learning process. Some examples of unsupervised learning algorithms include clustering and association rules. In the case of this type of learning, there is no pre-training data set; the problem is approached blindly and only with logical operations to guide it. Although at first glance it seems impossible, it is about the ability to solve complex problems using only input data and logical algorithms. This avoids the use of reference data. Unsupervised learning algorithms are used to discover hidden patterns in unlabeled data. Unlike supervised learning algorithms, where there is prior knowledge of the desired answers, these algorithms do not have a set of ordered data. They are responsible for determining the most important common characteristics of a group of information and then grouping them according to their similarities. Among the most interesting models are the neural networks. MATLAB implementrs the Deep Learning Toolbox specialized in the techniques of analytics based on neural networks. Throughout this book the techniques of analytics for clustering and classification based on neural networks are developed using MATLAB software

ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB

ARTIFICIAL INTELLIGENCE ALGORITHMS FOR UNSUPERVISED LEARNING: CLUSTERING AND PATTERN RECOGNITION WITH NEURAL NETWORKS. Examples with MATLAB PDF Author: CESAR PERZ LOPEZ
Publisher: SCIENTIFIC BOOKS
ISBN:
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
Artificial Intelligence combines mathematical algorithms and techniques from Machine Learning, Deep Learning and Big Data to extract the knowledge contained in the data and present it in an understandable and automatic way. Neural networks and their applications are a fundamental tool to develop work in Artificial Intelligence. On the other hand, unsupervised learning is more closely aligned with Artificial Intelligence as it gives the idea that a machine can learn to identify complex processes and patterns without the need for a human to provide guidance and supervision throughout the learning process. Some examples of unsupervised learning algorithms include clustering and association rules. In the case of this type of learning, there is no pre-training data set; the problem is approached blindly and only with logical operations to guide it. Although at first glance it seems impossible, it is about the ability to solve complex problems using only input data and logical algorithms. This avoids the use of reference data. Unsupervised learning algorithms are used to discover hidden patterns in unlabeled data. Unlike supervised learning algorithms, where there is prior knowledge of the desired answers, these algorithms do not have a set of ordered data. They are responsible for determining the most important common characteristics of a group of information and then grouping them according to their similarities. Among the most interesting models are the neural networks. MATLAB implementrs the Deep Learning Toolbox specialized in the techniques of analytics based on neural networks. Throughout this book the techniques of analytics for clustering and classification based on neural networks are developed using MATLAB software

Machine Learning for Healthcare Applications

Machine Learning for Healthcare Applications PDF Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
ISBN: 1119791812
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

MATLAB for Machine Learning

MATLAB for Machine Learning PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399390
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

Predictive Intelligence Using Big Data and the Internet of Things

Predictive Intelligence Using Big Data and the Internet of Things PDF Author: Gupta, P.K.
Publisher: IGI Global
ISBN: 1522562117
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
With the recent growth of big data and the internet of things (IoT), individuals can now upload, retrieve, store, and collect massive amounts of information to help drive decisions and optimize processes. Due to this, a new age of predictive computing is taking place, and data can now be harnessed to predict unknown occurrences or probabilities based on data collected in real time. Predictive Intelligence Using Big Data and the Internet of Things highlights state-of-the-art research on predictive intelligence using big data, the IoT, and related areas to ensure quality assurance and compatible IoT systems. Featuring coverage on predictive application scenarios to discuss these breakthroughs in real-world settings and various methods, frameworks, algorithms, and security concerns for predictive intelligence, this book is ideally designed for academicians, researchers, advanced-level students, and technology developers.

Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development

Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development PDF Author: Sandeep Kumar
Publisher: CRC Press
ISBN: 1000727033
Category : Computers
Languages : en
Pages : 127

Get Book Here

Book Description
Healthcare sector is characterized by difficulty, dynamism and variety. In 21st century, healthcare domain is surrounded by tons of challenges in terms of Disease detection, prevention, high costs, skilled technicians and better infrastructure. In order to handle these challenges, Intelligent Healthcare management technologies are required to play an effective role in improvising patient’s life. Healthcare organizations also need to continuously discover useful and actionable knowledge to gain insight from tons of data for various purposes for saving lives, reducing medical operations errors, enhancing efficiency, reducing costs and making the whole world a healthy world. Applying Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development is essential nowadays. The objective of this book is to highlight various Swarm Intelligence and Evolutionary Algorithms techniques for various medical issues in terms of Cancer Diagnosis, Brain Tumor, Diabetic Retinopathy, Heart disease as well as drug design and development. The book will act as one-stop reference for readers to think and explore Swarm Intelligence and Evolutionary Algorithms seriously for real-time patient diagnosis, as the book provides solutions to various complex diseases found critical for medical practitioners to diagnose in real-world. Key Features: Highlights the importance and applications of Swarm Intelligence and Evolutionary Algorithms in Healthcare industry. Elaborates Swarm Intelligence and Evolutionary Algorithms for Cancer Detection. In-depth coverage of computational methodologies, approaches and techniques based on Swarm Intelligence and Evolutionary Algorithms for detecting Brain Tumour including deep learning to optimize brain tumor diagnosis. Provides a strong foundation for Diabetic Retinopathy detection using Swarm and Evolutionary algorithms. Focuses on applying Swarm Intelligence and Evolutionary Algorithms for Heart Disease detection and diagnosis. Comprehensively covers the role of Swarm Intelligence and Evolutionary Algorithms for Drug Design and Discovery. The book will play a significant role for Researchers, Medical Practitioners, Healthcare Professionals and Industrial Healthcare Research and Development wings to conduct advanced research in Healthcare using Swarm Intelligence and Evolutionary Algorithms techniques.

Sustainability Issues for the Deep Foundations

Sustainability Issues for the Deep Foundations PDF Author: Hesham El-Naggar
Publisher: Springer
ISBN: 3030019020
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
This volume presents some advances in the analysis and design of deep foundations. It contains 21 technical papers covering various aspects of analysis and design of deep foundations based on full-scale field testing, numerical modeling and analytical solutions. They present results and findings from research as well as practical-oriented studies on deep foundations that are of interest to civil/geotechnical engineering community. The topics cover a wide spectrum of applications that include evaluation of the axial and lateral capacity of piles, pile group effects, evaluation of the increase in pile capacity with time (or pile setup), influence of excavation on pile capacity, study the behavior of pile raft caisson foundations, evaluation of the bearing capacity and settlement of piles from cone penetration tests, etc. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).

Education, Research and Business Technologies

Education, Research and Business Technologies PDF Author: Cristian Ciurea
Publisher: Springer Nature
ISBN: 9811688664
Category : Technology & Engineering
Languages : en
Pages : 420

Get Book Here

Book Description
This book includes high-quality research papers presented at 20th International Conference on Informatics in Economy (IE 2021), which is held in Bucharest, Romania during May 2021. The book covers research results in business informatics and related computer science topics, such as IoT, mobile-embedded and multimedia solutions, e-society, enterprise and business solutions, databases and big data, artificial intelligence, data-mining and machine learning, quantitative economics.

International Conference on Innovative Computing and Communications

International Conference on Innovative Computing and Communications PDF Author: Ashish Khanna
Publisher: Springer Nature
ISBN: 9811625972
Category : Technology & Engineering
Languages : en
Pages : 812

Get Book Here

Book Description
This book includes high-quality research papers presented at the Fourth International Conference on Innovative Computing and Communication (ICICC 2021), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on February 20–21, 2021. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.

Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications

Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522517995
Category : Technology & Engineering
Languages : en
Pages : 1837

Get Book Here

Book Description
The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.

Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough

Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough PDF Author: Vinit Kumar Gunjan
Publisher: Springer Nature
ISBN: 3030384454
Category : Technology & Engineering
Languages : en
Pages : 243

Get Book Here

Book Description
This book discusses various machine learning & cognitive science approaches, presenting high-throughput research by experts in this area. Bringing together machine learning, cognitive science and other aspects of artificial intelligence to help provide a roadmap for future research on intelligent systems, the book is a valuable reference resource for students, researchers and industry practitioners wanting to keep abreast of recent developments in this dynamic, exciting and profitable research field. It is intended for postgraduate students, researchers, scholars and developers who are interested in machine learning and cognitive research, and is also suitable for senior undergraduate courses in related topics. Further, it is useful for practitioners dealing with advanced data processing, applied mathematicians, developers of software for agent-oriented systems and developers of embedded and real-time systems.