Data Mining In Time Series Databases

Data Mining In Time Series Databases PDF Author: Horst Bunke
Publisher: World Scientific
ISBN: 981448654X
Category : Computers
Languages : en
Pages : 205

Get Book Here

Book Description
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.

Data Mining In Time Series Databases

Data Mining In Time Series Databases PDF Author: Horst Bunke
Publisher: World Scientific
ISBN: 981448654X
Category : Computers
Languages : en
Pages : 205

Get Book Here

Book Description
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.

Data Mining in Time Series Databases

Data Mining in Time Series Databases PDF Author: Mark Last
Publisher: World Scientific
ISBN: 9812382909
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. Contents: A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences (H M Lie); Indexing of Compressed Time Series (E Fink & K Pratt); Boosting Interval-Based Literal: Variable Length and Early Classification (J J Rodriguez Diez); Segmenting Time Series: A Survey and Novel Approach (E Keogh et al.); Indexing Similar Time Series under Conditions of Noise (M Vlachos et al.); Classification of Events in Time Series of Graphs (H Bunke & M Kraetzl); Median Strings--A Review (X Jiang et al.); Change Detection in Classfication Models of Data Mining (G Zeira et al.). Readership: Graduate students, reseachers and practitioners in the fields of data mining, machine learning, databases and statistics.

Data Mining in Time Series Databases

Data Mining in Time Series Databases PDF Author: Abraham Kandel
Publisher: World Scientific
ISBN: 981256540X
Category : Computers
Languages : en
Pages : 205

Get Book Here

Book Description
Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.

Time Series Databases

Time Series Databases PDF Author: Ted Dunning
Publisher: O'Reilly Media
ISBN: 9781491914724
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Time series data is of growing importance, especially with the rapid expansion of the Internet of Things. This concise guide shows you effective ways to collect, persist, and access large-scale time series data for analysis. You'll explore the theory behind time series databases and learn practical methods for implementing them. Authors Ted Dunning and Ellen Friedman provide a detailed examination of open source tools such as OpenTSDB and new modifications that greatly speed up data ingestion. You'll learn: A variety of time series use cases The advantages of NoSQL databases for large-scale time series data NoSQL table design for high-performance time series databases The benefits and limitations of OpenTSDB How to access data in OpenTSDB using R, Go, and Ruby How time series databases contribute to practical machine learning projects How to handle the added complexity of geo-temporal data For advice on analyzing time series data, check out Practical Machine Learning: A New Look at Anomaly Detection, also from Ted Dunning and Ellen Friedman.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Temporal Data Mining

Temporal Data Mining PDF Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398

Get Book Here

Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.

Principles of Data Mining

Principles of Data Mining PDF Author: David J. Hand
Publisher: MIT Press
ISBN: 9780262082907
Category : Computers
Languages : en
Pages : 594

Get Book Here

Book Description
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Principles of Data Mining and Knowledge Discovery

Principles of Data Mining and Knowledge Discovery PDF Author: Jan Zytkow
Publisher: Springer Science & Business Media
ISBN: 3540664904
Category : Computers
Languages : en
Pages : 608

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999. The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.

Applied Data Mining for Forecasting Using SAS

Applied Data Mining for Forecasting Using SAS PDF Author: Tim Rey
Publisher: SAS Institute
ISBN: 9781642953008
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs.

R and Data Mining

R and Data Mining PDF Author: Yanchang Zhao
Publisher: Academic Press
ISBN: 012397271X
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work