Author: Stephan Kudyba
Publisher: IGI Global
ISBN: 9781930708037
Category : Computers
Languages : en
Pages : 184
Book Description
Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Data Mining and Business Intelligence
Author: Stephan Kudyba
Publisher: IGI Global
ISBN: 9781930708037
Category : Computers
Languages : en
Pages : 184
Book Description
Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Publisher: IGI Global
ISBN: 9781930708037
Category : Computers
Languages : en
Pages : 184
Book Description
Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Data Mining for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 608
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 608
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Data Mining and Market Intelligence
Author: Mustapha Akinkunmi
Publisher: Springer Nature
ISBN: 3031793900
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book is written to address the issues relating to data gathering, data warehousing, and data analysis, all of which are useful when working with large amounts of data. Using practical examples of market intelligence, this book is designed to inspire and inform readers on how to conduct market intelligence by leveraging data and technology, supporting smart decision making. The book explains some suitable methodologies for data analysis that are based on robust statistical methods. For illustrative purposes, the author uses real-life data for all the examples in this book. In addition, the book discusses the concepts, techniques, and applications of digital media and mobile data mining. Hence, this book is a guide tool for policy makers, academics, and practitioners whose areas of interest are statistical inference, applied statistics, applied mathematics, business mathematics, quantitative techniques, and economic and social statistics.
Publisher: Springer Nature
ISBN: 3031793900
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book is written to address the issues relating to data gathering, data warehousing, and data analysis, all of which are useful when working with large amounts of data. Using practical examples of market intelligence, this book is designed to inspire and inform readers on how to conduct market intelligence by leveraging data and technology, supporting smart decision making. The book explains some suitable methodologies for data analysis that are based on robust statistical methods. For illustrative purposes, the author uses real-life data for all the examples in this book. In addition, the book discusses the concepts, techniques, and applications of digital media and mobile data mining. Hence, this book is a guide tool for policy makers, academics, and practitioners whose areas of interest are statistical inference, applied statistics, applied mathematics, business mathematics, quantitative techniques, and economic and social statistics.
Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence
Author: Trivedi, Shrawan Kumar
Publisher: IGI Global
ISBN: 1522520325
Category : Computers
Languages : en
Pages : 465
Book Description
The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.
Publisher: IGI Global
ISBN: 1522520325
Category : Computers
Languages : en
Pages : 465
Book Description
The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.
Business Intelligence
Author: Carlo Vercellis
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314
Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314
Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Data Mining for Intelligence, Fraud & Criminal Detection
Author: Christopher Westphal
Publisher: CRC Press
ISBN: 1420067249
Category : Computers
Languages : en
Pages : 450
Book Description
In 2004, the Government Accountability Office provided a report detailing approximately 200 government-based data-mining projects. While there is comfort in knowing that there are many effective systems, that comfort isn‘t worth much unless we can determine that these systems are being effectively and responsibly employed.Written by one of the most
Publisher: CRC Press
ISBN: 1420067249
Category : Computers
Languages : en
Pages : 450
Book Description
In 2004, the Government Accountability Office provided a report detailing approximately 200 government-based data-mining projects. While there is comfort in knowing that there are many effective systems, that comfort isn‘t worth much unless we can determine that these systems are being effectively and responsibly employed.Written by one of the most
Data Mining and Market Intelligence for Optimal Marketing Returns
Author: Susan Chiu
Publisher: Routledge
ISBN: 113641214X
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The authors present a practical and highly informative perspective on the elements that are crucial to the success of a marketing campaign. Unlike books that are either too theoretical to be of practical use to practitioners, or too soft to serve as solid and measurable implementation guidelines, this book focuses on the integration of established quantitative techniques into real life case studies that are immediately relevant to marketing practitioners.
Publisher: Routledge
ISBN: 113641214X
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The authors present a practical and highly informative perspective on the elements that are crucial to the success of a marketing campaign. Unlike books that are either too theoretical to be of practical use to practitioners, or too soft to serve as solid and measurable implementation guidelines, this book focuses on the integration of established quantitative techniques into real life case studies that are immediately relevant to marketing practitioners.
Data Mining Techniques
Author: Michael J. A. Berry
Publisher: John Wiley & Sons
ISBN: 0471470643
Category : Business & Economics
Languages : en
Pages : 671
Book Description
Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.
Publisher: John Wiley & Sons
ISBN: 0471470643
Category : Business & Economics
Languages : en
Pages : 671
Book Description
Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.
Data Mining III
Author: A. Zanasi
Publisher: WIT Press (UK)
ISBN:
Category : Computers
Languages : en
Pages : 1042
Book Description
Data mining brings together techniques from machine learning, pattern recognition, statistics, databases, linguistics and visualization in order to extract information from large databases. Originally principally concerned with behavioural applications, such as the understanding of customer behaviour, its scope has now been widened with the introduction of Text Mining techniques. Areas now encompassed by data mining include military, market, and competitive intelligence applications, taxonomies and internet search techniques, and knowledge management applications.
Publisher: WIT Press (UK)
ISBN:
Category : Computers
Languages : en
Pages : 1042
Book Description
Data mining brings together techniques from machine learning, pattern recognition, statistics, databases, linguistics and visualization in order to extract information from large databases. Originally principally concerned with behavioural applications, such as the understanding of customer behaviour, its scope has now been widened with the introduction of Text Mining techniques. Areas now encompassed by data mining include military, market, and competitive intelligence applications, taxonomies and internet search techniques, and knowledge management applications.
Data Mining and Market Intelligence for Optimal Marketing Returns
Author: Susan Chiu
Publisher: Routledge
ISBN: 1136412158
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The authors present a practical and highly informative perspective on the elements that are crucial to the success of a marketing campaign. Unlike books that are either too theoretical to be of practical use to practitioners, or too soft to serve as solid and measurable implementation guidelines, this book focuses on the integration of established quantitative techniques into real life case studies that are immediately relevant to marketing practitioners.
Publisher: Routledge
ISBN: 1136412158
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The authors present a practical and highly informative perspective on the elements that are crucial to the success of a marketing campaign. Unlike books that are either too theoretical to be of practical use to practitioners, or too soft to serve as solid and measurable implementation guidelines, this book focuses on the integration of established quantitative techniques into real life case studies that are immediately relevant to marketing practitioners.