Data Mining for Business Analytics

Data Mining for Business Analytics PDF Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 607

Get Book Here

Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Data Mining for Business Analytics

Data Mining for Business Analytics PDF Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 607

Get Book Here

Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Business Intelligence

Business Intelligence PDF Author: Carlo Vercellis
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.

Data Mining and Business Intelligence

Data Mining and Business Intelligence PDF Author: Stephan Kudyba
Publisher: IGI Global
ISBN: 9781930708037
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Business Intelligence and Data Mining

Business Intelligence and Data Mining PDF Author: Anil Maheshwari
Publisher: Business Expert Press
ISBN: 1631571214
Category : Business & Economics
Languages : en
Pages : 226

Get Book Here

Book Description
“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Integration Challenges for Analytics, Business Intelligence, and Data Mining

Integration Challenges for Analytics, Business Intelligence, and Data Mining PDF Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1799857832
Category : Computers
Languages : en
Pages : 250

Get Book Here

Book Description
As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.

Web Data Mining and Applications in Business Intelligence and Counter-Terrorism

Web Data Mining and Applications in Business Intelligence and Counter-Terrorism PDF Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 0203499514
Category : Business & Economics
Languages : en
Pages : 542

Get Book Here

Book Description
The explosion of Web-based data has created a demand among executives and technologists for methods to identify, gather, analyze, and utilize data that may be of value to corporations and organizations. The emergence of data mining, and the larger field of Web mining, has businesses lost within a confusing maze of mechanisms and strategies for obta

Microsoft Data Mining

Microsoft Data Mining PDF Author: Barry de Ville
Publisher: Elsevier
ISBN: 0080491847
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
Microsoft Data Mining approaches data mining from the particular perspective of IT professionals using Microsoft data management technologies. The author explains the new data mining capabilities in Microsoft's SQL Server 2000 database, Commerce Server, and other products, details the Microsoft OLE DB for Data Mining standard, and gives readers best practices for using all of them. The book bridges the previously specialized field of data mining with the new technologies and methods that are quickly making it an important mainstream tool for companies of all sizes.Data mining refers to a set of technologies and techniques by which IT professionals search large databases of information (such as those contained by SQL Server) for patterns and trends. Traditionally important in finance, telecommunication, and other information-intensive fields, data mining increasingly helps companies better understand and serve their customers by revealing buying patterns and related interests. It is becoming a foundation for e-commerce and knowledge management. - Unique book on a hot data management topic - Part of Digital Press's SQL Server and data mining clusters - Author is an expert on both traditional and Microsoft data mining technologies

Integration of Data Mining in Business Intelligence Systems

Integration of Data Mining in Business Intelligence Systems PDF Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1466664789
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Uncovering and analyzing data associated with the current business environment is essential in maintaining a competitive edge. As such, making informed decisions based on this data is crucial to managers across industries. Integration of Data Mining in Business Intelligence Systems investigates the incorporation of data mining into business technologies used in the decision making process. Emphasizing cutting-edge research and relevant concepts in data discovery and analysis, this book is a comprehensive reference source for policymakers, academicians, researchers, students, technology developers, and professionals interested in the application of data mining techniques and practices in business information systems.

Big Data and Business Analytics

Big Data and Business Analytics PDF Author: Jay Liebowitz
Publisher: CRC Press
ISBN: 1466565799
Category : Business & Economics
Languages : en
Pages : 293

Get Book Here

Book Description
"The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'"-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of "big data," it becomes vitally important for organizations to mak

Business Intelligence in Plain Language

Business Intelligence in Plain Language PDF Author: Jeremy M. Kolb
Publisher: CreateSpace
ISBN: 9781479324187
Category : Business intelligence
Languages : en
Pages : 66

Get Book Here

Book Description
One day a man walked into Asgard Inc. and changed the company forever. Unlike anyone who came before, he remembered and understood data as naturally as a fish swims in water. The CEO was shocked at how well the man knew the company. He started posing questions to this man. Who are my best customers? Why is this product struggling? Where is my greatest growth happening? The man answered these and more. Using his understanding of data, he identified key new markets, he discovered the best places to invest capital, and he even predicted the future. Overnight Asgard Inc. changed. Where before the CEO relied on limited information and gut feelings, now true knowledge guided his actions. The CEO took the man's hand in gratitude and asked, "Who are you?" and he replied, "I am Business Intelligence." Business Intelligence(BI) is shrouded in mystery for a lot of us but it doesn't need to stay that way. Business Intelligence in Plain Language is a systematic exploration of this complicated tool. I'll teach you about what it does, how it works, and most importantly how you can benefit from it. In this book you will learn about: Business Intelligence Data Mining Data Warehousing Data Discovery Big Data Outlier Detection Pattern Recognition Predictive Modeling Data Transformation and much more This book is your practical guide to understanding and implementing Business Intelligence.