Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Get Book Here

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Get Book Here

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Commercial Data Mining

Commercial Data Mining PDF Author: David Nettleton
Publisher: Elsevier
ISBN: 012416658X
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience

Statistical and Machine-Learning Data Mining

Statistical and Machine-Learning Data Mining PDF Author: Bruce Ratner
Publisher: CRC Press
ISBN: 1466551216
Category : Business & Economics
Languages : en
Pages : 544

Get Book Here

Book Description
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Data Analysis and Data Mining

Data Analysis and Data Mining PDF Author: Adelchi Azzalini
Publisher: Oxford University Press
ISBN: 0199942714
Category : Business & Economics
Languages : en
Pages : 289

Get Book Here

Book Description
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.

Cluster Analysis and Data Mining

Cluster Analysis and Data Mining PDF Author: Ronald S. King
Publisher: Mercury Learning and Information
ISBN: 1942270135
Category : Computers
Languages : en
Pages : 363

Get Book Here

Book Description
Cluster analysis is used in data mining and is a common technique for statistical data analysis used in many fields of study, such as the medical & life sciences, behavioral & social sciences, engineering, and in computer science. Designed for training industry professionals or for a course on clustering and classification, it can also be used as a companion text for applied statistics. No previous experience in clustering or data mining is assumed. Informal algorithms for clustering data and interpreting results are emphasized. In order to evaluate the results of clustering and to explore data, graphical methods and data structures are used for representing data. Throughout the text, examples and references are provided, in order to enable the material to be comprehensible for a diverse audience. A companion disc includes numerous appendices with programs, data, charts, solutions, etc. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected]. FEATURES *Places emphasis on illustrating the underlying logic in making decisions during the cluster analysis *Discusses the related applications of statistic, e.g., Ward’s method (ANOVA), JAN (regression analysis & correlational analysis), cluster validation (hypothesis testing, goodness-of-fit, Monte Carlo simulation, etc.) *Contains separate chapters on JAN and the clustering of categorical data *Includes a companion disc with solutions to exercises, programs, data sets, charts, etc.

Statistical and Machine-Learning Data Mining:

Statistical and Machine-Learning Data Mining: PDF Author: Bruce Ratner
Publisher: CRC Press
ISBN: 149879761X
Category : Computers
Languages : en
Pages : 690

Get Book Here

Book Description
Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Collaborative Filtering Using Data Mining and Analysis

Collaborative Filtering Using Data Mining and Analysis PDF Author: Bhatnagar, Vishal
Publisher: IGI Global
ISBN: 1522504907
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.