Learning from Data

Learning from Data PDF Author: Yaser S. Abu-Mostafa
Publisher:
ISBN: 9781600490064
Category : Machine learning
Languages : en
Pages : 201

Get Book Here

Book Description


Street Data

Street Data PDF Author: Shane Safir
Publisher: Corwin
ISBN: 1071812661
Category : Education
Languages : en
Pages : 281

Get Book Here

Book Description
Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.

Deep Learning with Structured Data

Deep Learning with Structured Data PDF Author: Mark Ryan
Publisher: Simon and Schuster
ISBN: 163835717X
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps

Machine Learning for Data Streams

Machine Learning for Data Streams PDF Author: Albert Bifet
Publisher: MIT Press
ISBN: 026254783X
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance PDF Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Transforming Teaching and Learning Through Data-Driven Decision Making

Transforming Teaching and Learning Through Data-Driven Decision Making PDF Author: Ellen B. Mandinach
Publisher: Corwin Press
ISBN: 1452279667
Category : Education
Languages : en
Pages : 281

Get Book Here

Book Description
Connect data and instruction to improve practice Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text’s integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: Assessment Statistics Instructional and differentiated psychology Classroom management

Using Data to Improve Student Learning in School Districts

Using Data to Improve Student Learning in School Districts PDF Author: Victoria Bernhardt
Publisher: Routledge
ISBN: 1317922840
Category : Education
Languages : en
Pages : 511

Get Book Here

Book Description
This book helps you make sense of the data your school district collects, including state student achievement results as well as other qualitative and quantitative data. Easy-to-use templates, tools, and examples are available on the accompanying downloadable resources.

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Using Data to Improve Learning for All

Using Data to Improve Learning for All PDF Author: Nancy Love
Publisher: Corwin Press
ISBN: 1412960851
Category : Education
Languages : en
Pages : 193

Get Book Here

Book Description
Collaborative inquiry + effective use of data = significant leaps in learning and achievement! This resource combines a powerful collaborative inquiry process, reflective dialogue, and rigorous use of data to improve outcomes for all students. The editor and contributors provide detailed examples of schools that have demonstrated dramatic gains by building collaborative cultures, nurturing ongoing inquiry, and using data systematically. The book shows school leaders how to: Implement collaborative inquiry to meet accountability mandates Build and support a high-performing data culture Establish a school climate characterized by collective responsibility for student learning and a respect for students’ cultures

The Data Coach′s Guide to Improving Learning for All Students

The Data Coach′s Guide to Improving Learning for All Students PDF Author: Nancy Love
Publisher: Corwin
ISBN: 1071841440
Category : Education
Languages : en
Pages : 409

Get Book Here

Book Description
"This book offers a compelling message of hope and resolve. The authors′ three-year journey in a multiplicity of diverse, underperforming, high-poverty schools across the nation has resulted in a treasure chest of knowledge and experiences about how to professionally develop data coaches in ways that benefit some of our most underserved students. This book provides powerful resources to those who have the belief, passion, and desire for implementing collaborative data inquiries in schools and districts." —From the Foreword by Ruth S. Johnson Use data as an effective tool for school change and improvement! How can data coaches create a collaborative culture in which data is used continuously and effectively to improve teaching and learning? The Data Coach′s Guide to Improving Learning for All Students provides detailed guidance for helping schools move away from unproductive data practices and toward examining data as a catalyst for systematic and continuous improvement in instruction and student learning. To help both current and aspiring data coaches facilitate school-based data teams and lead teachers in collaborative inquiry, the authors demonstrate a data model that has been field-tested and proven to be effective in: Narrowing achievement gaps between students in all content areas and grade levels Achieving strong, steady gains in local and state assessments in mathematics, science, and reading Using data as a springboard for powerful conversations about race/ethnicity, class, educational status, gender, and language differences Developing shared values and a vision for creating a high-performing, data-informed school culture This culturally responsive resource benefits staff developers, teachers, and administrators interested in creating change through effective data practices, and includes a CD-ROM keyed to the book, with templates, handouts, PowerPoint slides, resources, and sample goals and agendas.