Author: Ivan Damnjanovic
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
Data Analytics for Engineering and Construction Project Risk Management
Author: Ivan Damnjanovic
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
Engineering and Management of Data Centers
Author: Jorge Marx Gómez
Publisher: Springer
ISBN: 3319650823
Category : Computers
Languages : en
Pages : 290
Book Description
This edited volume covers essential and recent development in the engineering and management of data centers. Data centers are complex systems requiring ongoing support, and their high value for keeping business continuity operations is crucial. The book presents core topics on the planning, design, implementation, operation and control, and sustainability of a data center from a didactical and practitioner viewpoint. Chapters include: · Foundations of data centers: Key Concepts and Taxonomies · ITSDM: A Methodology for IT Services Design · Managing Risks on Data Centers through Dashboards · Risk Analysis in Data Center Disaster Recovery Plans · Best practices in Data Center Management Case: KIO Networks · QoS in NaaS (Network as a Service) using Software Defined Networking · Optimization of Data Center Fault-Tolerance Design · Energetic Data Centre Design Considering Energy Efficiency Improvements During Operation · Demand-side Flexibility and Supply-side Management: The Use Case of Data Centers and Energy Utilities · DevOps: Foundations and its Utilization in Data Centers · Sustainable and Resilient Network Infrastructure Design for Cloud Data Centres · Application Software in Cloud-Ready Data Centers This book bridges the gap between academia and the industry, offering essential reading for practitioners in data centers, researchers in the area, and faculty teaching related courses on data centers. The book can be used as a complementary text for traditional courses on Computer Networks, as well as innovative courses on IT Architecture, IT Service Management, IT Operations, and Data Centers.
Publisher: Springer
ISBN: 3319650823
Category : Computers
Languages : en
Pages : 290
Book Description
This edited volume covers essential and recent development in the engineering and management of data centers. Data centers are complex systems requiring ongoing support, and their high value for keeping business continuity operations is crucial. The book presents core topics on the planning, design, implementation, operation and control, and sustainability of a data center from a didactical and practitioner viewpoint. Chapters include: · Foundations of data centers: Key Concepts and Taxonomies · ITSDM: A Methodology for IT Services Design · Managing Risks on Data Centers through Dashboards · Risk Analysis in Data Center Disaster Recovery Plans · Best practices in Data Center Management Case: KIO Networks · QoS in NaaS (Network as a Service) using Software Defined Networking · Optimization of Data Center Fault-Tolerance Design · Energetic Data Centre Design Considering Energy Efficiency Improvements During Operation · Demand-side Flexibility and Supply-side Management: The Use Case of Data Centers and Energy Utilities · DevOps: Foundations and its Utilization in Data Centers · Sustainable and Resilient Network Infrastructure Design for Cloud Data Centres · Application Software in Cloud-Ready Data Centers This book bridges the gap between academia and the industry, offering essential reading for practitioners in data centers, researchers in the area, and faculty teaching related courses on data centers. The book can be used as a complementary text for traditional courses on Computer Networks, as well as innovative courses on IT Architecture, IT Service Management, IT Operations, and Data Centers.
Data Engineering
Author: Yupo Chan
Publisher: Springer Science & Business Media
ISBN: 1441901760
Category : Computers
Languages : en
Pages : 381
Book Description
DATA ENGINEERING: Mining, Information, and Intelligence describes applied research aimed at the task of collecting data and distilling useful information from that data. Most of the work presented emanates from research completed through collaborations between Acxiom Corporation and its academic research partners under the aegis of the Acxiom Laboratory for Applied Research (ALAR). Chapters are roughly ordered to follow the logical sequence of the transformation of data from raw input data streams to refined information. Four discrete sections cover Data Integration and Information Quality; Grid Computing; Data Mining; and Visualization. Additionally, there are exercises at the end of each chapter. The primary audience for this book is the broad base of anyone interested in data engineering, whether from academia, market research firms, or business-intelligence companies. The volume is ideally suited for researchers, practitioners, and postgraduate students alike. With its focus on problems arising from industry rather than a basic research perspective, combined with its intelligent organization, extensive references, and subject and author indices, it can serve the academic, research, and industrial audiences.
Publisher: Springer Science & Business Media
ISBN: 1441901760
Category : Computers
Languages : en
Pages : 381
Book Description
DATA ENGINEERING: Mining, Information, and Intelligence describes applied research aimed at the task of collecting data and distilling useful information from that data. Most of the work presented emanates from research completed through collaborations between Acxiom Corporation and its academic research partners under the aegis of the Acxiom Laboratory for Applied Research (ALAR). Chapters are roughly ordered to follow the logical sequence of the transformation of data from raw input data streams to refined information. Four discrete sections cover Data Integration and Information Quality; Grid Computing; Data Mining; and Visualization. Additionally, there are exercises at the end of each chapter. The primary audience for this book is the broad base of anyone interested in data engineering, whether from academia, market research firms, or business-intelligence companies. The volume is ideally suited for researchers, practitioners, and postgraduate students alike. With its focus on problems arising from industry rather than a basic research perspective, combined with its intelligent organization, extensive references, and subject and author indices, it can serve the academic, research, and industrial audiences.
Data Science in Engineering and Management
Author: Zdzislaw Polkowski
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
Publisher: CRC Press
ISBN: 1000520846
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
Data Teams
Author: Jesse Anderson
Publisher:
ISBN: 9781484262290
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781484262290
Category :
Languages : en
Pages :
Book Description
Essentials of Project and Systems Engineering Management
Author: Howard Eisner
Publisher: John Wiley & Sons
ISBN: 1118276345
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic principles. Readers familiar with the previous two critically acclaimed editions will find much new material in this latest edition, including: Multiple views of and approaches to architectures The systems engineer and software engineering The acquisition of systems Problems with systems, software, and requirements Group processes and decision making System complexity and integration Throughout the presentation, clear examples help readers understand how concepts have been put into practice in real-world situations. With its unique integration of project management and systems engineering, this book helps both engineers and project managers across a broad range of industries successfully develop and manage a project team that, in turn, builds successful systems. For engineering and management students in such disciplines as technology management, systems engineering, and industrial engineering, the book provides excellent preparation for moving from the classroom to industry.
Publisher: John Wiley & Sons
ISBN: 1118276345
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic principles. Readers familiar with the previous two critically acclaimed editions will find much new material in this latest edition, including: Multiple views of and approaches to architectures The systems engineer and software engineering The acquisition of systems Problems with systems, software, and requirements Group processes and decision making System complexity and integration Throughout the presentation, clear examples help readers understand how concepts have been put into practice in real-world situations. With its unique integration of project management and systems engineering, this book helps both engineers and project managers across a broad range of industries successfully develop and manage a project team that, in turn, builds successful systems. For engineering and management students in such disciplines as technology management, systems engineering, and industrial engineering, the book provides excellent preparation for moving from the classroom to industry.
ASME Engineer's Data Book
Author: Clifford Matthews
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
This greatly expanded second edition of this popular and handy reference book includes over 100 new pages, including extensive coverage of Section VIII of the ASME Pressure Vessel Code. Divided into 22 sections, this pocket-sized volume is an exhaustive "quick reference" of up-to-date engineering data and rules. It includes: essential mathematics; units; engineering design processes and principles; basic mechanical design; motion; mechanics of materials; material failure; thermodynamics; fluid mechanics; fluid equipment; vessel codes and standards; materials; machine elements; design and production tools; project engineering; computer-aided engineering; welding; non-destructive examination; corrosion; surface protection; metallurgical terms; and engineering associations and organizations.
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
This greatly expanded second edition of this popular and handy reference book includes over 100 new pages, including extensive coverage of Section VIII of the ASME Pressure Vessel Code. Divided into 22 sections, this pocket-sized volume is an exhaustive "quick reference" of up-to-date engineering data and rules. It includes: essential mathematics; units; engineering design processes and principles; basic mechanical design; motion; mechanics of materials; material failure; thermodynamics; fluid mechanics; fluid equipment; vessel codes and standards; materials; machine elements; design and production tools; project engineering; computer-aided engineering; welding; non-destructive examination; corrosion; surface protection; metallurgical terms; and engineering associations and organizations.
Data Engineering
Author: Olaf Wolkenhauer
Publisher: John Wiley & Sons
ISBN: 0471464104
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Although data engineering is a multi-disciplinary field withapplications in control, decision theory, and the emerging hot areaof bioinformatics, there are no books on the market that make thesubject accessible to non-experts. This book fills the gap in thefield, offering a clear, user-friendly introduction to the maintheoretical and practical tools for analyzing complex systems. Anftp site features the corresponding MATLAB and Mathematical toolsand simulations. Market: Researchers in data management, electrical engineering,computer science, and life sciences.
Publisher: John Wiley & Sons
ISBN: 0471464104
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Although data engineering is a multi-disciplinary field withapplications in control, decision theory, and the emerging hot areaof bioinformatics, there are no books on the market that make thesubject accessible to non-experts. This book fills the gap in thefield, offering a clear, user-friendly introduction to the maintheoretical and practical tools for analyzing complex systems. Anftp site features the corresponding MATLAB and Mathematical toolsand simulations. Market: Researchers in data management, electrical engineering,computer science, and life sciences.
Data-Driven Technology for Engineering Systems Health Management
Author: Gang Niu
Publisher: Springer
ISBN: 9811020329
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis.
Publisher: Springer
ISBN: 9811020329
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis.
Data Engineering with Google Cloud Platform
Author: Adi Wijaya
Publisher: Packt Publishing Ltd
ISBN: 1800565062
Category : Computers
Languages : en
Pages : 440
Book Description
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1800565062
Category : Computers
Languages : en
Pages : 440
Book Description
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.