Author: Nirupam Chakraborti
Publisher: CRC Press
ISBN: 1000635864
Category : Technology & Engineering
Languages : en
Pages : 507
Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Data-Driven Evolutionary Modeling in Materials Technology
Author: Nirupam Chakraborti
Publisher: CRC Press
ISBN: 1000635864
Category : Technology & Engineering
Languages : en
Pages : 507
Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Publisher: CRC Press
ISBN: 1000635864
Category : Technology & Engineering
Languages : en
Pages : 507
Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Data-Driven Evolutionary Modeling in Materials Technology
Author: NIRUPAM. CHAKRABORTI
Publisher: CRC Press
ISBN: 9781032061733
Category :
Languages : en
Pages : 0
Book Description
This book presents the genetic and evolutionary, algorithms and strategies associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions including available professional and public domain codes and a gamut of recent applications.
Publisher: CRC Press
ISBN: 9781032061733
Category :
Languages : en
Pages : 0
Book Description
This book presents the genetic and evolutionary, algorithms and strategies associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions including available professional and public domain codes and a gamut of recent applications.
Springback Assessment and Compensation of Tailor Welded Blanks
Author: Ab Abdullah
Publisher: CRC Press
ISBN: 1000821943
Category : Science
Languages : en
Pages : 309
Book Description
Focusing on techniques developed to evaluate the forming behaviour of tailor welded blanks (TWBs) in sheet metal manufacturing, this edited collection details compensation methods suited to mitigating the effects of springback. Making use of case studies and in-depth accounts of industry experience, this book gives a comprehensive overview of springback and provides essential solutions necessary to modern-day automotive engineers. Sheet metal forming is a major process within the automotive industry, with advancement of the technology including utilization of non-uniform sheet metal in order to produce light or strengthened body structures. This is critical in the reduction of vehicle weight in order to match increased consumer demand for better driving performance and improved fuel efficiency. Additionally, increasingly stringent international regulations regarding exhaust emissions require manufacturers to seek to lighten vehicles as much as possible. To aid engineers in optimizing lightweight designs, this comprehensive book covers topics by a variety of industry experts, including compensation by annealing, low-power welding, punch profile radius and tool-integrated springback measuring systems. It ends by looking at the future trends within the industry and the potential for further innovation within the field. This work will benefit car manufacturers and stamping plants that face springback issues within their production, particularly in the implementation of TWB production into existing facilities. It will also be of interest to students and researchers in automotive and aerospace engineering.
Publisher: CRC Press
ISBN: 1000821943
Category : Science
Languages : en
Pages : 309
Book Description
Focusing on techniques developed to evaluate the forming behaviour of tailor welded blanks (TWBs) in sheet metal manufacturing, this edited collection details compensation methods suited to mitigating the effects of springback. Making use of case studies and in-depth accounts of industry experience, this book gives a comprehensive overview of springback and provides essential solutions necessary to modern-day automotive engineers. Sheet metal forming is a major process within the automotive industry, with advancement of the technology including utilization of non-uniform sheet metal in order to produce light or strengthened body structures. This is critical in the reduction of vehicle weight in order to match increased consumer demand for better driving performance and improved fuel efficiency. Additionally, increasingly stringent international regulations regarding exhaust emissions require manufacturers to seek to lighten vehicles as much as possible. To aid engineers in optimizing lightweight designs, this comprehensive book covers topics by a variety of industry experts, including compensation by annealing, low-power welding, punch profile radius and tool-integrated springback measuring systems. It ends by looking at the future trends within the industry and the potential for further innovation within the field. This work will benefit car manufacturers and stamping plants that face springback issues within their production, particularly in the implementation of TWB production into existing facilities. It will also be of interest to students and researchers in automotive and aerospace engineering.
Data-Driven Evolutionary Optimization
Author: Yaochu Jin
Publisher: Springer Nature
ISBN: 3030746402
Category : Computers
Languages : en
Pages : 408
Book Description
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Publisher: Springer Nature
ISBN: 3030746402
Category : Computers
Languages : en
Pages : 408
Book Description
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Computational Sciences and Artificial Intelligence in Industry
Author: Tero Tuovinen
Publisher: Springer Nature
ISBN: 3030707873
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book is addressed to young researchers and engineers in the fields of Computational Science and Artificial Intelligence, ranging from innovative computational methods to digital machine learning tools and their coupling used for solving challenging industrial and societal problems.This book provides the latest knowledge from jointly academic and industries experts in Computational Science and Artificial Intelligence fields for exploring possibilities and identifying challenges of applying Computational Sciences and AI methods and tools in industrial and societal sectors.
Publisher: Springer Nature
ISBN: 3030707873
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book is addressed to young researchers and engineers in the fields of Computational Science and Artificial Intelligence, ranging from innovative computational methods to digital machine learning tools and their coupling used for solving challenging industrial and societal problems.This book provides the latest knowledge from jointly academic and industries experts in Computational Science and Artificial Intelligence fields for exploring possibilities and identifying challenges of applying Computational Sciences and AI methods and tools in industrial and societal sectors.
Data-Driven Optimization of Manufacturing Processes
Author: Kalita, Kanak
Publisher: IGI Global
ISBN: 1799872084
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
Publisher: IGI Global
ISBN: 1799872084
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
Advances In Data-based Approaches For Hydrologic Modeling And Forecasting
Author: Bellie Sivakumar
Publisher: World Scientific
ISBN: 9814464759
Category : Science
Languages : en
Pages : 542
Book Description
This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.
Publisher: World Scientific
ISBN: 9814464759
Category : Science
Languages : en
Pages : 542
Book Description
This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.
Informatics for Materials Science and Engineering
Author: Krishna Rajan
Publisher: Butterworth-Heinemann
ISBN: 012394614X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. - Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs - Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets - Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems
Publisher: Butterworth-Heinemann
ISBN: 012394614X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. - Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs - Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets - Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
All Data Are Local
Author: Yanni Alexander Loukissas
Publisher: MIT Press
ISBN: 0262039664
Category : Computers
Languages : en
Pages : 267
Book Description
How to analyze data settings rather than data sets, acknowledging the meaning-making power of the local. In our data-driven society, it is too easy to assume the transparency of data. Instead, Yanni Loukissas argues in All Data Are Local, we should approach data sets with an awareness that data are created by humans and their dutiful machines, at a time, in a place, with the instruments at hand, for audiences that are conditioned to receive them. The term data set implies something discrete, complete, and portable, but it is none of those things. Examining a series of data sources important for understanding the state of public life in the United States—Harvard's Arnold Arboretum, the Digital Public Library of America, UCLA's Television News Archive, and the real estate marketplace Zillow—Loukissas shows us how to analyze data settings rather than data sets. Loukissas sets out six principles: all data are local; data have complex attachments to place; data are collected from heterogeneous sources; data and algorithms are inextricably entangled; interfaces recontextualize data; and data are indexes to local knowledge. He then provides a set of practical guidelines to follow. To make his argument, Loukissas employs a combination of qualitative research on data cultures and exploratory data visualizations. Rebutting the “myth of digital universalism,” Loukissas reminds us of the meaning-making power of the local.
Publisher: MIT Press
ISBN: 0262039664
Category : Computers
Languages : en
Pages : 267
Book Description
How to analyze data settings rather than data sets, acknowledging the meaning-making power of the local. In our data-driven society, it is too easy to assume the transparency of data. Instead, Yanni Loukissas argues in All Data Are Local, we should approach data sets with an awareness that data are created by humans and their dutiful machines, at a time, in a place, with the instruments at hand, for audiences that are conditioned to receive them. The term data set implies something discrete, complete, and portable, but it is none of those things. Examining a series of data sources important for understanding the state of public life in the United States—Harvard's Arnold Arboretum, the Digital Public Library of America, UCLA's Television News Archive, and the real estate marketplace Zillow—Loukissas shows us how to analyze data settings rather than data sets. Loukissas sets out six principles: all data are local; data have complex attachments to place; data are collected from heterogeneous sources; data and algorithms are inextricably entangled; interfaces recontextualize data; and data are indexes to local knowledge. He then provides a set of practical guidelines to follow. To make his argument, Loukissas employs a combination of qualitative research on data cultures and exploratory data visualizations. Rebutting the “myth of digital universalism,” Loukissas reminds us of the meaning-making power of the local.