Author: Simon C. Lin
Publisher: Springer Science & Business Media
ISBN: 1441980148
Category : Computers
Languages : en
Pages : 526
Book Description
ISGC 2010, The International Symposium on Grid Computing was held at Academia Sinica, Taipei, Taiwan, March, 2010. The 2010 symposium brought together prestigious scientists and engineers worldwide to exchange ideas, present challenges/solutions and to discuss new topics in the field of Grid Computing. Data Driven e-Science: Use Cases and Successful Applications of Distributed Computing Infrastructures (ISGC 2010), an edited volume, introduces the latest achievements in grid technology for Biomedicine Life Sciences, Middleware, Security, Networking, Digital Library, Cloud Computing and more. This book provides Grid developers and end users with invaluable information for developing grid technology and applications. The last section of this book presents future development in the field of Grid Computing. This book is designed for a professional audience composed of grid users, developers and researchers working in the field of grid computing. Advanced-level students focused on computer science and engineering will also find this book valuable as a reference or secondary text book.
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Data Driven e-Science
Author: Simon C. Lin
Publisher: Springer Science & Business Media
ISBN: 1441980148
Category : Computers
Languages : en
Pages : 526
Book Description
ISGC 2010, The International Symposium on Grid Computing was held at Academia Sinica, Taipei, Taiwan, March, 2010. The 2010 symposium brought together prestigious scientists and engineers worldwide to exchange ideas, present challenges/solutions and to discuss new topics in the field of Grid Computing. Data Driven e-Science: Use Cases and Successful Applications of Distributed Computing Infrastructures (ISGC 2010), an edited volume, introduces the latest achievements in grid technology for Biomedicine Life Sciences, Middleware, Security, Networking, Digital Library, Cloud Computing and more. This book provides Grid developers and end users with invaluable information for developing grid technology and applications. The last section of this book presents future development in the field of Grid Computing. This book is designed for a professional audience composed of grid users, developers and researchers working in the field of grid computing. Advanced-level students focused on computer science and engineering will also find this book valuable as a reference or secondary text book.
Publisher: Springer Science & Business Media
ISBN: 1441980148
Category : Computers
Languages : en
Pages : 526
Book Description
ISGC 2010, The International Symposium on Grid Computing was held at Academia Sinica, Taipei, Taiwan, March, 2010. The 2010 symposium brought together prestigious scientists and engineers worldwide to exchange ideas, present challenges/solutions and to discuss new topics in the field of Grid Computing. Data Driven e-Science: Use Cases and Successful Applications of Distributed Computing Infrastructures (ISGC 2010), an edited volume, introduces the latest achievements in grid technology for Biomedicine Life Sciences, Middleware, Security, Networking, Digital Library, Cloud Computing and more. This book provides Grid developers and end users with invaluable information for developing grid technology and applications. The last section of this book presents future development in the field of Grid Computing. This book is designed for a professional audience composed of grid users, developers and researchers working in the field of grid computing. Advanced-level students focused on computer science and engineering will also find this book valuable as a reference or secondary text book.
Applied Data Science
Author: Martin Braschler
Publisher: Springer
ISBN: 3030118215
Category : Computers
Languages : en
Pages : 464
Book Description
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
Publisher: Springer
ISBN: 3030118215
Category : Computers
Languages : en
Pages : 464
Book Description
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
Machine Learning Control – Taming Nonlinear Dynamics and Turbulence
Author: Thomas Duriez
Publisher: Springer
ISBN: 3319406248
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
Publisher: Springer
ISBN: 3319406248
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657
Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657
Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Transforming Teaching and Learning Through Data-Driven Decision Making
Author: Ellen B. Mandinach
Publisher: Corwin Press
ISBN: 1412982049
Category : Business & Economics
Languages : en
Pages : 281
Book Description
"Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management."--Publisher's description.
Publisher: Corwin Press
ISBN: 1412982049
Category : Business & Economics
Languages : en
Pages : 281
Book Description
"Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management."--Publisher's description.
Data-Driven Security
Author: Jay Jacobs
Publisher: John Wiley & Sons
ISBN: 1118793722
Category : Computers
Languages : en
Pages : 354
Book Description
Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.
Publisher: John Wiley & Sons
ISBN: 1118793722
Category : Computers
Languages : en
Pages : 354
Book Description
Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.
Data Science in the Library
Author: Joel Herndon
Publisher:
ISBN: 9781783304608
Category : Big data
Languages : en
Pages : 0
Book Description
This book considers the current environment for data driven research, instruction, and consultation from a variety of faculty and library perspectives and suggests strategies for engaging with the tools and methods of data driven research.
Publisher:
ISBN: 9781783304608
Category : Big data
Languages : en
Pages : 0
Book Description
This book considers the current environment for data driven research, instruction, and consultation from a variety of faculty and library perspectives and suggests strategies for engaging with the tools and methods of data driven research.
Data and Information in Online Environments
Author: Rogério Mugnaini
Publisher: Springer Nature
ISBN: 3030500721
Category : Computers
Languages : en
Pages : 256
Book Description
This book constitutes the refereed post-conference proceedings of the First International Conference on Data and Information in Online Environments, DIONE 2020, which took place in Florianópolis, Brazil, in March 2020. DIONE 2020 handles the growing interaction between the information sciences, communication sciences and computer sciences. The 18 revised full papers were carefully reviewed and selected from 37 submissions and focus on the production, dissemination and evaluation of contents in online environments. The goal is to improve cooperation between data science, natural language processing, data engineering, big data, research evaluation, network science, sociology of science and communication communities.
Publisher: Springer Nature
ISBN: 3030500721
Category : Computers
Languages : en
Pages : 256
Book Description
This book constitutes the refereed post-conference proceedings of the First International Conference on Data and Information in Online Environments, DIONE 2020, which took place in Florianópolis, Brazil, in March 2020. DIONE 2020 handles the growing interaction between the information sciences, communication sciences and computer sciences. The 18 revised full papers were carefully reviewed and selected from 37 submissions and focus on the production, dissemination and evaluation of contents in online environments. The goal is to improve cooperation between data science, natural language processing, data engineering, big data, research evaluation, network science, sociology of science and communication communities.
Dynamic Data-Driven Environmental Systems Science
Author: Sai Ravela
Publisher: Springer
ISBN: 3319251384
Category : Computers
Languages : en
Pages : 365
Book Description
This book constitutes the refereed proceedings of the First International Conference on Dynamic Data-Driven Environmental Systems Science, DyDESS 2014, held in Cambridge, MA, USA, in November 2014.The 24 revised full papers and 7 short papers were carefully reviewed and selected from 62 submissions and cover topics on sensing, imaging and retrieval for the oceans, atmosphere, space, land, earth and planets that is informed by the environmental context; algorithms for modeling and simulation, downscaling, model reduction, data assimilation, uncertainty quantification and statistical learning; methodologies for planning and control, sampling and adaptive observation, and efficient coupling of these algorithms into information-gathering and observing system designs; and applications of methodology to environmental estimation, analysis and prediction including climate, natural hazards, oceans, cryosphere, atmosphere, land, space, earth and planets.
Publisher: Springer
ISBN: 3319251384
Category : Computers
Languages : en
Pages : 365
Book Description
This book constitutes the refereed proceedings of the First International Conference on Dynamic Data-Driven Environmental Systems Science, DyDESS 2014, held in Cambridge, MA, USA, in November 2014.The 24 revised full papers and 7 short papers were carefully reviewed and selected from 62 submissions and cover topics on sensing, imaging and retrieval for the oceans, atmosphere, space, land, earth and planets that is informed by the environmental context; algorithms for modeling and simulation, downscaling, model reduction, data assimilation, uncertainty quantification and statistical learning; methodologies for planning and control, sampling and adaptive observation, and efficient coupling of these algorithms into information-gathering and observing system designs; and applications of methodology to environmental estimation, analysis and prediction including climate, natural hazards, oceans, cryosphere, atmosphere, land, space, earth and planets.