Data-Driven Decision Making and Dynamic Planning

Data-Driven Decision Making and Dynamic Planning PDF Author: Paul Preuss
Publisher: Routledge
ISBN: 1317924142
Category : Education
Languages : en
Pages : 147

Get Book Here

Book Description
This book will help you understand how to integrate data-based decisions into the daily work of the school. It is a practical and relevant handbook for converting data into wise decision-making and planning. It will give you the skills to successfully make data-based decisions, measure student learning and program effectiveness, evaluate student progress, use data to improve instruction, integrate a "Dynamic Planning" process into the daily operation of your school.

Data-Driven Decision Making and Dynamic Planning

Data-Driven Decision Making and Dynamic Planning PDF Author: Paul Preuss
Publisher: Routledge
ISBN: 1317924142
Category : Education
Languages : en
Pages : 147

Get Book Here

Book Description
This book will help you understand how to integrate data-based decisions into the daily work of the school. It is a practical and relevant handbook for converting data into wise decision-making and planning. It will give you the skills to successfully make data-based decisions, measure student learning and program effectiveness, evaluate student progress, use data to improve instruction, integrate a "Dynamic Planning" process into the daily operation of your school.

Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems PDF Author: Erik P. Blasch
Publisher: Springer Nature
ISBN: 3030745686
Category : Computers
Languages : en
Pages : 753

Get Book Here

Book Description
The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination. The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms. Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions. In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide. Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential. Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University

Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems PDF Author: Frederica Darema
Publisher: Springer Nature
ISBN: 3031279867
Category : Computers
Languages : en
Pages : 937

Get Book Here

Book Description
This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).

Dynamic Data Driven Applications Systems

Dynamic Data Driven Applications Systems PDF Author: Frederica Darema
Publisher: Springer Nature
ISBN: 3030617254
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.

The Data-Driven Project Manager

The Data-Driven Project Manager PDF Author: Mario Vanhoucke
Publisher: Apress
ISBN: 1484234987
Category : Business & Economics
Languages : en
Pages : 164

Get Book Here

Book Description
Discover solutions to common obstacles faced by project managers. Written as a business novel, the book is highly interactive, allowing readers to participate and consider options at each stage of a project. The book is based on years of experience, both through the author's research projects as well as his teaching lectures at business schools. The book tells the story of Emily Reed and her colleagues who are in charge of the management of a new tennis stadium project. The CEO of the company, Jacob Mitchell, is planning to install a new data-driven project management methodology as a decision support tool for all upcoming projects. He challenges Emily and her team to start a journey in exploring project data to fight against unexpected project obstacles. Data-driven project management is known in the academic literature as “dynamic scheduling” or “integrated project management and control.” It is a project management methodology to plan, monitor, and control projects in progress in order to deliver them on time and within budget to the client. Its main focus is on the integration of three crucial aspects, as follows: Baseline Scheduling: Plan the project activities to create a project timetable with time and budget restrictions. Determine start and finish times of each project activity within the activity network and resource constraints. Know the expected timing of the work to be done as well as an expected impact on the project’s time and budget objectives. Schedule Risk Analysis: Analyze the risk of the baseline schedule and its impact on the project’s time and budget. Use Monte Carlo simulations to assess the risk of the baseline schedule and to forecast the impact of time and budget deviations on the project objectives. Project Control: Measure and analyze the project’s performance data and take actions to bring the project on track. Monitor deviations from the expected project progress and control performance in order to facilitate the decision-making process in case corrective actions are needed to bring projects back on track. Both traditional Earned Value Management (EVM) and the novel Earned Schedule (ES) methods are used. What You'll Learn Implement a data-driven project management methodology (also known as "dynamic scheduling") which allows project managers to plan, monitor, and control projects while delivering them on time and within budget Study different project management tools and techniques, such as PERT/CPM, schedule risk analysis (SRA), resource buffering, and earned value management (EVM) Understand the three aspects of dynamic scheduling: baseline scheduling, schedule risk analysis, and project control Who This Book Is For Project managers looking to learn data-driven project management (or "dynamic scheduling") via a novel, demonstrating real-time simulations of how project managers can solve common project obstacles

Dynamic Data-driven Simulation: Real-time Data For Dynamic System Analysis And Prediction

Dynamic Data-driven Simulation: Real-time Data For Dynamic System Analysis And Prediction PDF Author: Xiaolin Hu
Publisher: World Scientific
ISBN: 9811267197
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This comprehensive book systematically introduces Dynamic Data Driven Simulation (DDDS) as a new simulation paradigm that makes real-time data and simulation model work together to enable simulation-based prediction/analysis.The text is significantly dedicated to introducing data assimilation as an enabling technique for DDDS. While data assimilation has been studied in other science fields (e.g., meteorology, oceanography), it is a new topic for the modeling and simulation community.This unique reference text bridges the two study areas of data assimilation and modelling and simulation, which have been developed largely independently from each other.

Data-Driven Intelligent Business Sustainability

Data-Driven Intelligent Business Sustainability PDF Author: Singh, Sonia
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Data-driven decision making is crucial for ensuring the long-term sustainability of businesses and economic growth. While rapid technological advancements have enabled the collection and analysis of data on an unprecedented scale, businesses face challenges in adopting evidence-based decision making. Data-Driven Intelligent Business Sustainability is a comprehensive guide that examines the challenges and opportunities presented by data-driven decision making. It covers new technologies like blockchain, IoT, and AI, explores their potential for sustainable business success, and provides guidance on managing cybersecurity threats. The book also includes case studies and examples of successful implementations of data-driven decision making, making it a practical resource for those seeking to upskill or reskill in this field. Targeted at computer science and engineering professionals, researchers, and students, the book provides valuable insights into the role of data-driven decision making in business sustainability, helping businesses achieve long-term success.

Dynamic Data Driven Applications Systems

Dynamic Data Driven Applications Systems PDF Author: Erik Blasch
Publisher: Springer Nature
ISBN: 3031526708
Category :
Languages : en
Pages : 434

Get Book Here

Book Description


Enabling technologies and business models for energy communities

Enabling technologies and business models for energy communities PDF Author: Alessandro Burgio
Publisher: Frontiers Media SA
ISBN: 2832543243
Category : Technology & Engineering
Languages : en
Pages : 211

Get Book Here

Book Description


Creating Dynamic Space in Higher Education: Modern Shifts in Policy, Competencies, and Governance

Creating Dynamic Space in Higher Education: Modern Shifts in Policy, Competencies, and Governance PDF Author: Areba, George Ngwacho
Publisher: IGI Global
ISBN:
Category : Education
Languages : en
Pages : 504

Get Book Here

Book Description
The 21st century has brought transformative changes to higher education, reshaping how institutions approach research, teaching, and learning. Shifts in policies, competencies, and the integration of technology have redefined the landscape which has pushed higher education to adapt to new demands. With increasing globalization and digitization, universities and colleges face challenges in aligning their structures with the needs of a rapidly evolving labor market and society. Creating Dynamic Space in Higher Education: Modern Shifts in Policy, Competencies, and Governance examines the critical shifts reshaping higher education, including governance changes, digital transformation, globalization, and evolving instructional practices. With contributions from field experts, this volume offers practical strategies, case studies, and insights on addressing financial challenges, adapting roles, and developing competencies for the future workforce. This book is ideal for education managers, instructors, policymakers, and researchers seeking to navigate these changes and optimize their institutions for the future.