Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation PDF Author: Jose Nathan Kutz
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657

Get Book Here

Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation PDF Author: Jose Nathan Kutz
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657

Get Book Here

Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Dynamic Mode Decomposition

Dynamic Mode Decomposition PDF Author: J. Nathan Kutz
Publisher: SIAM
ISBN: 1611974496
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLABĀ®.

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems PDF Author: M. Reza Rahimi Tabar
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.

Data-driven Approaches for Complex Systems

Data-driven Approaches for Complex Systems PDF Author: Connor Anthony Verheyen
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Many research efforts to advance human health and well-being involve interdisciplinary problem spaces and complex, poorly-understood systems. This thesis integrates both computational and experimental approaches to advance our understanding and control of complex systems at the interface of machine learning, materials science, and manufacturing. Specifically, I demonstrate the data-driven description of supervised machine learning for biomedical engineering tasks, the data-driven design of optimized soft granular biomaterials, and the proof-of-concept development of a transcatheter additive manufacturing platform. In Part 1, I develop custom software for high-resolution, multifactorial machine learning (ML) experiments. I iteratively apply this workflow to a set of diverse ML problems from the biomedical engineering (BME) domain to generate massive meta-datasets covering each phase of the hierarchical ML optimization and evaluation process. Then, I describe the underlying patterns and heterogeneity in these rich datasets and delineate empirical guidelines for the rigorous and reliable adoption of machine learning for BME problems. In Part 2, I leverage the insights from Part 1 to develop a flexible and robust data-driven modeling pipeline for complex soft materials. The pipeline can be applied after each round of experimentation to build predictive models, extract key design rules, and generate data-driven design frameworks. I use this integrated, stepwise approach to optimize the structures, properties, and performance profiles of soft granular biomaterials for injection- and extrusion-based biomedical applications. In Part 3, I leverage the optimized materials from Part 2 to develop a novel microgel-based transcatheter additive manufacturing technology. I obtain proof-of-concept data for the platform's critical features, including controlled transcatheter material delivery to distant target locations, rapid in situ structuration of arbitrary 3D constructs, and reliable scaffold stabilization to ensure long-term implant integrity. Together, this work paves the way for minimally-invasive, patient-specific, in situ biofabrication.

Advances in data-driven approaches and modeling of complex systems

Advances in data-driven approaches and modeling of complex systems PDF Author: Mohd Hafiz Mohd
Publisher: Frontiers Media SA
ISBN: 2832526659
Category : Science
Languages : en
Pages : 133

Get Book Here

Book Description


Dynamic Mode Decomposition

Dynamic Mode Decomposition PDF Author: J. Nathan Kutz
Publisher: SIAM
ISBN: 161197450X
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Big Data in Complex Systems

Big Data in Complex Systems PDF Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 331911056X
Category : Technology & Engineering
Languages : en
Pages : 502

Get Book Here

Book Description
This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.

Model- and Data-driven Approaches to Fault Detection and Isolation in Complex Systems

Model- and Data-driven Approaches to Fault Detection and Isolation in Complex Systems PDF Author: Hamed Khorasgani
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description


Predictive Approaches to Control of Complex Systems

Predictive Approaches to Control of Complex Systems PDF Author: Gorazd Karer
Publisher: Springer
ISBN: 3642339476
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems.