Data Acquisition and Reconstruction Methods for 3D and 4D Medical X-ray Tomography

Data Acquisition and Reconstruction Methods for 3D and 4D Medical X-ray Tomography PDF Author: Michael Graß
Publisher:
ISBN:
Category :
Languages : en
Pages : 231

Get Book Here

Book Description

Data Acquisition and Reconstruction Methods for 3D and 4D Medical X-ray Tomography

Data Acquisition and Reconstruction Methods for 3D and 4D Medical X-ray Tomography PDF Author: Michael Graß
Publisher:
ISBN:
Category :
Languages : en
Pages : 231

Get Book Here

Book Description


3D Image Reconstruction for CT and PET

3D Image Reconstruction for CT and PET PDF Author: Daniele Panetta
Publisher: CRC Press
ISBN: 100017588X
Category : Medical
Languages : en
Pages : 97

Get Book Here

Book Description
This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolò Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.

Fundamentals of Computerized Tomography

Fundamentals of Computerized Tomography PDF Author: Gabor T. Herman
Publisher: Springer Science & Business Media
ISBN: 1846287235
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
This revised and updated second edition – now with two new chapters - is the only book to give a comprehensive overview of computer algorithms for image reconstruction. It covers the fundamentals of computerized tomography, including all the computational and mathematical procedures underlying data collection, image reconstruction and image display. Among the new topics covered are: spiral CT, fully 3D positron emission tomography, the linogram mode of backprojection, and state of the art 3D imaging results. It also includes two new chapters on comparative statistical evaluation of the 2D reconstruction algorithms and alternative approaches to image reconstruction.

3D Imaging in Medicine

3D Imaging in Medicine PDF Author: Karl H. Höhne
Publisher: Springer Science & Business Media
ISBN: 3642842119
Category : Computers
Languages : en
Pages : 449

Get Book Here

Book Description
The visualization of human anatomy for diagnostic, therapeutic, and educational pur poses has long been a challenge for scientists and artists. In vivo medical imaging could not be introduced until the discovery of X-rays by Wilhelm Conrad ROntgen in 1895. With the early medical imaging techniques which are still in use today, the three-dimensional reality of the human body can only be visualized in two-dimensional projections or cross-sections. Recently, biomedical engineering and computer science have begun to offer the potential of producing natural three-dimensional views of the human anatomy of living subjects. For a broad application of such technology, many scientific and engineering problems still have to be solved. In order to stimulate progress, the NATO Advanced Research Workshop in Travemiinde, West Germany, from June 25 to 29 was organized. It brought together approximately 50 experts in 3D-medical imaging from allover the world. Among the list of topics image acquisition was addressed first, since its quality decisively influences the quality of the 3D-images. For 3D-image generation - in distinction to 2D imaging - a decision has to be made as to which objects contained in the data set are to be visualized. Therefore special emphasis was laid on methods of object definition. For the final visualization of the segmented objects a large variety of visualization algorithms have been proposed in the past. The meeting assessed these techniques.

Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine PDF Author: Pierre Grangeat
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
This book contains twenty-one selected papers based on communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held July 4-6, 1995 at Domaine d'Aix- Marlioz, Aix-les-Bains, France. 3D tomographic imaging systems based on ionising radiations tend to use 2D detectors in order to improve the radiation detection efficiency. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the region of interest. These systems include 3D radiology, 3D X-ray computerised tomography, single photon emission computerised tomography (SPECT), and positron emission tomography (PET). The material is divided into four parts covering the following topics: cone-beam and new geometries reconstruction, SPECT quantitation, patient motion and gated SPECT, and PET quantitation and reconstruction. Audience:This work will be of interest to scientists, physicists and physicians seeking new information and insight in the on-going research work in this expanding field.

The Theory and Practice of 3D PET

The Theory and Practice of 3D PET PDF Author: B. Bendriem
Publisher: Springer Science & Business Media
ISBN: 9401734755
Category : Medical
Languages : en
Pages : 180

Get Book Here

Book Description
The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.

Medical Imaging Systems

Medical Imaging Systems PDF Author: Andreas Maier
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.

3D Imaging in Medicine, Second Edition

3D Imaging in Medicine, Second Edition PDF Author: Jayaram K. Udupa
Publisher: CRC Press
ISBN: 9780849331794
Category : Medical
Languages : en
Pages : 394

Get Book Here

Book Description
The ability to visualize, non-invasively, human internal organs in their true from and shape has intrigued mankind for centuries. While the recent inventions of medical imaging modalities such as computerized tomography and magnetic resonance imaging have revolutionized radiology, the development of three-dimensional (3D) imaging has brought us closer to the age-old quest of non-invasive visualization. The ability to not only visualize but to manipulate and analyze 3D structures from captured multidimensional image data, is vital to a number of diagnostic and therapeutic applications. 3D Imaging in Medicine, Second Edition, unique in its contents, covers both the technical aspects and the actual medical applications of the process in a single source. The value of this technology is obvious. For example, three dimensional imaging allows a radiologist to accurately target the positioning and dosage of chemotherapy as well as to make more accurate diagnoses by showing more pathology; it allows the vascular surgeon to study the flow of blood through clogged arteries; it allows the orthopedist to find all the pieces of a compound fracture; and, it allows oncologists to perform less invasive biopsies. In fact, one of the most important uses of 3D Imaging is in computer-assisted surgery. For example, in cancer surgery, computer images show the surgeon the extent of the tumor so that only the diseased tissue is removed. In short, 3D imaging provides clinicians with information that saves time and money. 3D Imaging in Medicine, Second Edition provides a ready reference on the fundamental science of 3D imaging and its medical applications. The chapters have been written by experts in the field, and the technical aspects are covered in a tutorial fashion, describing the basic principles and algorithms in an easily understandable way. The application areas covered include: surgical planning, neuro-surgery, orthopedics, prosthesis design, brain imaging, analysis of cardio-pulmonary structures, and the assessment of clinical efficacy. The book is designed to provide a quick and systematic understanding of the principles of biomedical visualization to students, scientists and researchers, and to act as a source of information to medical practitioners on a wide variety of clinical applications of 3D imaging.

Three-Dimensional Digital Tomosynthesis

Three-Dimensional Digital Tomosynthesis PDF Author: Yulia Levakhina
Publisher: Springer
ISBN: 3658056975
Category : Computers
Languages : en
Pages : 205

Get Book Here

Book Description
Yulia Levakhina gives an introduction to the major challenges of image reconstruction in Digital Tomosynthesis (DT), particularly to the connection of the reconstruction problem with the incompleteness of the DT dataset. The author discusses the factors which cause the formation of limited angle artifacts and proposes how to account for them in order to improve image quality and axial resolution of modern DT. The addressed methods include a weighted non-linear back projection scheme for algebraic reconstruction and novel dual-axis acquisition geometry. All discussed algorithms and methods are supplemented by detailed illustrations, hints for practical implementation, pseudo-code, simulation results and real patient case examples.

Recent Advances in 3D Imaging, Modeling, and Reconstruction

Recent Advances in 3D Imaging, Modeling, and Reconstruction PDF Author: Voulodimos, Athanasios
Publisher: IGI Global
ISBN: 1522552952
Category : Computers
Languages : en
Pages : 396

Get Book Here

Book Description
3D image reconstruction is used in many fields, such as medicine, entertainment, and computer science. This highly demanded process comes with many challenges, such as images becoming blurry by atmospheric turbulence, getting snowed with noise, or becoming damaged within foreign regions. It is imperative to remain well-informed with the latest research in this field. Recent Advances in 3D Imaging, Modeling, and Reconstruction is a collection of innovative research on the methods and common techniques of image reconstruction as well as the accuracy of these methods. Featuring coverage on a wide range of topics such as ray casting, holographic techniques, and machine learning, this publication is ideally designed for graphic designers, computer engineers, medical professionals, robotics engineers, city planners, game developers, researchers, academicians, and students.