Damage-Based Earthquake Engineering

Damage-Based Earthquake Engineering PDF Author: P. Ghisbain
Publisher: WIT Press
ISBN: 1784660132
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
Over the life of a structure, the smaller but more frequent earthquakes contribute more to the cumulative damage than the larger earthquakes on which structural design is traditionally based. This is a quantitative argument in favour of designing structures beyond what the codes require for life-safety. This book presents a computational method to evaluate the damage sustained by a building over its lifetime in a seismic environment. The ability to estimate future damage is relevant to a pair of current trends in earthquake engineering: a growing interest for preventing damage on top of protecting the public, and development of performance-based design. The proposed method combines probabilistic principles with traditional structural analysis, which makes it readily applicable to evaluation of planned structures in an engineering office. The analytical models, computational steps and supporting data used to produce an estimate of damage are discussed, and variants of the method with different run time and accuracy are considered. As an example of application to structural design, the book proposes a method to optimise placement of viscous dampers in buildings by minimising a life-cycle cost that includes the investment in damping and the losses due to future damage. Along with the results obtained in the course of other examples, the optimal solutions support a shift toward more resilient structures designed to mitigate structural and nonstructural damage beyond the traditional life-safety requirements.

Damage-Based Earthquake Engineering

Damage-Based Earthquake Engineering PDF Author: P. Ghisbain
Publisher: WIT Press
ISBN: 1784660132
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
Over the life of a structure, the smaller but more frequent earthquakes contribute more to the cumulative damage than the larger earthquakes on which structural design is traditionally based. This is a quantitative argument in favour of designing structures beyond what the codes require for life-safety. This book presents a computational method to evaluate the damage sustained by a building over its lifetime in a seismic environment. The ability to estimate future damage is relevant to a pair of current trends in earthquake engineering: a growing interest for preventing damage on top of protecting the public, and development of performance-based design. The proposed method combines probabilistic principles with traditional structural analysis, which makes it readily applicable to evaluation of planned structures in an engineering office. The analytical models, computational steps and supporting data used to produce an estimate of damage are discussed, and variants of the method with different run time and accuracy are considered. As an example of application to structural design, the book proposes a method to optimise placement of viscous dampers in buildings by minimising a life-cycle cost that includes the investment in damping and the losses due to future damage. Along with the results obtained in the course of other examples, the optimal solutions support a shift toward more resilient structures designed to mitigate structural and nonstructural damage beyond the traditional life-safety requirements.

Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions

Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions PDF Author: Gemma Joyce Cremen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Performance-based earthquake engineering (PBEE) has in many ways revolutionized the thinking about seismic engineering design and acceptable performance of buildings in earthquakes. It is now making its way into commercial engineering design and risk analysis practice, as engineers aim to design better-performing buildings, and holders of mortgage or insurance instruments try to better understand the risk they face from damage to associated buildings. Some parts of the calculations (e.g. structural response) have been extensively assessed and validated. There are few similar studies, however, that focus on the damage and loss predictions. The purpose of this dissertation is to address this, by analyzing, evaluating, and improving the damage and loss predictions. The specific PBEE methodology examined in this dissertation is the FEMA P-58 Seismic Performance Assessment Procedure. FEMA P-58 damage and loss predictions are analyzed, to determine how they are impacted by other parts of the calculations. Firstly, variance-based sensitivity analyses are conducted to investigate the interaction of loss predictions with different inputs to the calculations. Of the six inputs considered in the analyses, it is found that predictions of building repair cost (as a fraction of replacement value) are most sensitive to shaking intensity and building age, while building re-occupancy time predictions are most sensitive to shaking intensity and building lateral system. Secondly, a methodology is developed to quantify the impact of available structural response data from seismic instrumentation on the quality of the damage and loss predictions. The density of instrumentation examined using the methodology ranges from the case in which all floors are instrumented to that in which no floors are instrumented and simplified procedures are used to produce structural response predictions. It is found that the quality of the predictions generally improves as the density of seismic instrumentation increases, but it is not crucial for the density to be very high to achieve reasonable accuracy in both damage and loss predictions (although this may depend on the arrangement of instrumentation within a building). Loss predictions are evaluated using data observed in previous seismic events, to understand the degree to which they reflect real-life consequences of earthquakes. A methodology is developed for evaluating the ability of FEMA P-58 component-level losses to predict damage observed for groups of buildings. It is found in applications of the methodology that FEMA P-58 non-structural component-level loss predictions provide more insight into damage than variations in ground shaking between buildings. Finally, this dissertation includes a number of recommendations for improving non-structural mechanical component fragility functions and associated loss predictions used in FEMA-58 calculations. The fitting technique currently used for the functions does not converge in some cases, and the methodology used to predict anchored mechanical component losses can lead to some unexpected results, such as non-smooth variation of repair costs with anchorage capacity. An alternative statistical technique is proposed for fitting the fragility functions that mitigates the non-convergence problems when fitting and makes predictions that better align with damage observed in past events. A more intuitive methodology for predicting anchored mechanical component losses is also suggested. The findings of this dissertation help to enhance understanding of, and improve, the damage and loss predictions used in the FEMA P-58 seismic performance assessment procedure. They ultimately enable various stakeholders, such as building owners, design professionals, lenders, and insurers, to make more informed decisions about seismic risk.

Earthquake Engineering for Structural Design

Earthquake Engineering for Structural Design PDF Author: W.F. Chen
Publisher: CRC Press
ISBN: 1420037145
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Eng

Engineering Solutions for Earthquakes

Engineering Solutions for Earthquakes PDF Author: Jason Porterfield
Publisher: The Rosen Publishing Group, Inc
ISBN: 1725347776
Category : Juvenile Nonfiction
Languages : en
Pages : 48

Get Book Here

Book Description
In some parts of the world, earthquakes are a serious threat to cities and towns. Their destructive power and unpredictable nature give them the power to bring about widespread devastation. Earthquake engineering is a branch of engineering that is dedicated to limiting the damage that quakes can bring. By working to establish guidelines and standards, earthquake engineers can help reduce the risk of injuries caused by collapsing structures. This resource describes how earthquakes occur and the disciplines that go into earthquake engineering, while examining some of the engineering principles that go into designing strong and resilient buildings.

Energy-Based Seismic Engineering

Energy-Based Seismic Engineering PDF Author: Humberto Varum
Publisher: Springer Nature
ISBN: 3031365623
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book Here

Book Description
This book gathers the latest advances, innovations, and applications in the field of seismic engineering, as presented by leading researchers and engineers at the 2nd International Workshop on Energy-Based Seismic Engineering (IWEBSE), held in Porto, Portugal, on July 3–6, 2023. The book covers a diverse range of topics, including energy-based EDPs, damage potential of ground motion, structural modeling in energy-based damage assessment of structures, energy dissipation demand on structural components, innovative structures with energy dissipation systems or seismic isolation, as well as seismic design and analysis. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.

Advances in Assessment and Modeling of Earthquake Loss

Advances in Assessment and Modeling of Earthquake Loss PDF Author: Sinan Akkar
Publisher: Springer Nature
ISBN: 3030688135
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.

Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society

Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society PDF Author: Matej Fischinger
Publisher: Springer
ISBN: 9401788758
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.

Reducing the Risks of Nonstructural Earthquake Damage

Reducing the Risks of Nonstructural Earthquake Damage PDF Author: Eduardo A. Fierro
Publisher: DIANE Publishing
ISBN: 9780788126031
Category : Buildings
Languages : en
Pages : 146

Get Book Here

Book Description
Explains the sources of nonstructural earthquake damage in simple terms, and provides information on effective methods of reducing the potential risks. Intended for a lay audience: building owners, facilities managers, maintenance personnel, store or office managers, corporate/agency department heads, business proprietors, homeowners. Covers: building utility systems (batteries, piping, chillers); architectural elements (stairways, windows, exterior signs); and furniture and contents (library stacks, artwork, stoves, cabinets, etc.). Drawings and photos. Glossary and bibliography.

Probabilistic performance-based seismic design

Probabilistic performance-based seismic design PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883941084
Category : Technology & Engineering
Languages : en
Pages : 124

Get Book Here

Book Description
In the last ten to fifteen years a vast amount of research has been undertaken to improve on earlier methods for analysing the seismic reliability of structures. These efforts focused on identifying aspects of prominent relevance and disregarding the inessential ones, with the goal of producing methods that are both more efficient and easier to use in practice. Today this goal can be said to be substantially achieved. During these years scientific activity covered all of the many aspects involved in such a multi-disciplinary problem, ranging from seismology, to geotechnics, to structural analysis and economy, all of them to be consistently organised into a probabilistic framework. As the output of this research was dispersed into a multitude of technical papers, fib Commission 7 thought it worthwhile to select the essential aspects of this large body of knowledge and to present them into a coherent and accessible document for structural engineers. To this end a task group of specialists was formed, whose qualifications come from their personal involvement in the above-mentioned developments throughout this period of time. From its inception the group decided that the bulletin should have had a distinct educational character and provide a clear overview of the methods available. The outcome is a compact volume that starts by introducing the concepts and definitions of performance-based engineering, continues with two chapters on assessment and design, respectively, presenting the methods in detail accompanied by illustrative examples, and concludes with an appendix with sample programming excerpts for their implementation. It is believed that at present fib Bulletin 68 represents a unique compendium on probabilistic performance-based seismic design.

Earthquake Engineering: Mechanism, Damage Assessment And Structural Design (Second And Revised Edition)

Earthquake Engineering: Mechanism, Damage Assessment And Structural Design (Second And Revised Edition) PDF Author: Sidney F Borg
Publisher: World Scientific
ISBN: 9814518980
Category : Technology & Engineering
Languages : en
Pages : 347

Get Book Here

Book Description
This book is the expanded version of the earlier (first edition) text. It presents new comprehensive rational quantitative theories (utilizing fundamental energy concepts throughout) covering the entire earthquake event from the point of view of the engineer. It starts with a mathematical analysis of an underground mechanism (the earthquake), then proceeds to determinations of the timewise and spacewise variations of the fundamental engineering damage-design parameter, the ground energy. Finally, the new theories are applied to a number of typical (actual) structural and non-structural design problems. Each chapter of the first edition has now been improved and enlarged and new chapters have been added to include recent research by the author and his graduate students.