D-modules, Representation Theory, and Quantum Groups

D-modules, Representation Theory, and Quantum Groups PDF Author: Louis Boutet de Monvel
Publisher: Springer
ISBN: 3540481958
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
CONTENTS: L. Boutet de Monvel: Indice de systemes differentiels.- C. De Concini, C. Procesi: Quantum groups.- P. Schapira, J.P. Schneiders: Index theorems for R-constructible sheaves and for D-modules.- N. Berline, M. Vergne: The equivariant Chern character and index of G-invariant operators.

D-modules, Representation Theory, and Quantum Groups

D-modules, Representation Theory, and Quantum Groups PDF Author: Louis Boutet de Monvel
Publisher: Springer
ISBN: 3540481958
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
CONTENTS: L. Boutet de Monvel: Indice de systemes differentiels.- C. De Concini, C. Procesi: Quantum groups.- P. Schapira, J.P. Schneiders: Index theorems for R-constructible sheaves and for D-modules.- N. Berline, M. Vergne: The equivariant Chern character and index of G-invariant operators.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
ISBN:
Category : Computers
Languages : en
Pages : 514

Get Book Here

Book Description
A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Complex Semisimple Quantum Groups and Representation Theory

Complex Semisimple Quantum Groups and Representation Theory PDF Author: Christian Voigt
Publisher: Springer Nature
ISBN: 3030524639
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.

Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory PDF Author: Victor G. Kac
Publisher: Springer
ISBN: 3030021912
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups PDF Author: Ken Brown
Publisher: Birkhäuser
ISBN: 303488205X
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Akihiko Gyoja
Publisher: Springer Science & Business Media
ISBN: 0817646973
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

Foundations of Quantum Group Theory

Foundations of Quantum Group Theory PDF Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 9780521648684
Category : Group theory
Languages : en
Pages : 668

Get Book Here

Book Description
A graduate level text which systematically lays out the foundations of Quantum Groups.

Cohomology for Quantum Groups via the Geometry of the Nullcone

Cohomology for Quantum Groups via the Geometry of the Nullcone PDF Author: Christopher P. Bendel
Publisher: American Mathematical Soc.
ISBN: 0821891758
Category : Mathematics
Languages : en
Pages : 110

Get Book Here

Book Description
In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p=h. The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H (u ? ,C) of the small quantum group.

Combinatorial and Geometric Representation Theory

Combinatorial and Geometric Representation Theory PDF Author: Seok-Jin Kang
Publisher: American Mathematical Soc.
ISBN: 0821832123
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This volume presents the proceedings of the international conference on Combinatorial and Geometric Representation Theory. In the field of representation theory, a wide variety of mathematical ideas are providing new insights, giving powerful methods for understanding the theory, and presenting various applications to other branches of mathematics. Over the past two decades, there have been remarkable developments. This book explains the strong connections between combinatorics, geometry, and representation theory. It is suitable for graduate students and researchers interested in representation theory.

Quantum Group Symmetry And Q-tensor Algebras

Quantum Group Symmetry And Q-tensor Algebras PDF Author: Lawrence C Biedenharn
Publisher: World Scientific
ISBN: 9814500135
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.