Author: Masaki Kashiwara
Publisher: De Gruyter Proceedings in Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 220
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
D-modules and Microlocal Geometry
Author: Masaki Kashiwara
Publisher: De Gruyter Proceedings in Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 220
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: De Gruyter Proceedings in Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 220
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
D-modules and Microlocal Calculus
Author: Masaki Kashiwara
Publisher: American Mathematical Soc.
ISBN: 9780821827666
Category : Mathematics
Languages : en
Pages : 276
Book Description
Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.
Publisher: American Mathematical Soc.
ISBN: 9780821827666
Category : Mathematics
Languages : en
Pages : 276
Book Description
Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.
A Primer of Algebraic D-Modules
Author: S. C. Coutinho
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223
Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223
Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
D-modules, Representation Theory, and Quantum Groups
Author: Louis Boutet de Monvel
Publisher: Springer
ISBN: 3540481958
Category : Mathematics
Languages : en
Pages : 226
Book Description
CONTENTS: L. Boutet de Monvel: Indice de systemes differentiels.- C. De Concini, C. Procesi: Quantum groups.- P. Schapira, J.P. Schneiders: Index theorems for R-constructible sheaves and for D-modules.- N. Berline, M. Vergne: The equivariant Chern character and index of G-invariant operators.
Publisher: Springer
ISBN: 3540481958
Category : Mathematics
Languages : en
Pages : 226
Book Description
CONTENTS: L. Boutet de Monvel: Indice de systemes differentiels.- C. De Concini, C. Procesi: Quantum groups.- P. Schapira, J.P. Schneiders: Index theorems for R-constructible sheaves and for D-modules.- N. Berline, M. Vergne: The equivariant Chern character and index of G-invariant operators.
New Trends in Microlocal Analysis
Author: J.-M. Bony
Publisher: Springer Science & Business Media
ISBN: 4431684131
Category : Mathematics
Languages : en
Pages : 237
Book Description
Microlocal analysis began around 1970 when Mikio Sato, along with coauthors Masaki Kashiwara and Takahiro Kawai, wrote a decisive article on the structure of pseudodifferential equations, thus laying the foundation of D-modules and the singular spectrums of hyperfunctions. The key idea is the analysis of problems on the phase space, i.e., the cotangent bundle of the base space. Microlocal analysis is an active area of mathematical research that has been applied to many fields such as real and complex analysis, representation theory, topology, number theory, and mathematical physics. This volume contains the presentations given at a seminar jointly organized by the Japan Society for the Promotion of Science and Centre National des Recherches Scientifiques entitled New Trends in Microlocal Analysis. The book is divided into three parts: partial differential equations and mathematical analysis, mathematical physics, and algebraic analysis - D-modules and sheave theory. The large variety of new research that is covered will prove invaluable to students and researchers alike.
Publisher: Springer Science & Business Media
ISBN: 4431684131
Category : Mathematics
Languages : en
Pages : 237
Book Description
Microlocal analysis began around 1970 when Mikio Sato, along with coauthors Masaki Kashiwara and Takahiro Kawai, wrote a decisive article on the structure of pseudodifferential equations, thus laying the foundation of D-modules and the singular spectrums of hyperfunctions. The key idea is the analysis of problems on the phase space, i.e., the cotangent bundle of the base space. Microlocal analysis is an active area of mathematical research that has been applied to many fields such as real and complex analysis, representation theory, topology, number theory, and mathematical physics. This volume contains the presentations given at a seminar jointly organized by the Japan Society for the Promotion of Science and Centre National des Recherches Scientifiques entitled New Trends in Microlocal Analysis. The book is divided into three parts: partial differential equations and mathematical analysis, mathematical physics, and algebraic analysis - D-modules and sheave theory. The large variety of new research that is covered will prove invaluable to students and researchers alike.
Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis
Author: Eric Grinberg
Publisher: American Mathematical Soc.
ISBN: 0821811487
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.
Publisher: American Mathematical Soc.
ISBN: 0821811487
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.
Analysis of Dirac Systems and Computational Algebra
Author: Fabrizio Colombo
Publisher: Springer Science & Business Media
ISBN: 0817681663
Category : Mathematics
Languages : en
Pages : 344
Book Description
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0817681663
Category : Mathematics
Languages : en
Pages : 344
Book Description
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Differential Equations on Complex Manifolds
Author: Boris Sternin
Publisher: Springer Science & Business Media
ISBN: 940171259X
Category : Mathematics
Languages : en
Pages : 517
Book Description
The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory.
Publisher: Springer Science & Business Media
ISBN: 940171259X
Category : Mathematics
Languages : en
Pages : 517
Book Description
The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory.
D-Modules and Microlocal Geometry
Author: Masaki Kashiwara
Publisher: Walter de Gruyter
ISBN: 3110856034
Category : Mathematics
Languages : en
Pages : 213
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter
ISBN: 3110856034
Category : Mathematics
Languages : en
Pages : 213
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Analytic D-Modules and Applications
Author: Jan-Erik Björk
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588
Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588
Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.