Curvature of Space and Time, with an Introduction to Geometric Analysis

Curvature of Space and Time, with an Introduction to Geometric Analysis PDF Author: Iva Stavrov
Publisher: American Mathematical Soc.
ISBN: 1470456281
Category : Education
Languages : en
Pages : 259

Get Book Here

Book Description
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.

Curvature of Space and Time, with an Introduction to Geometric Analysis

Curvature of Space and Time, with an Introduction to Geometric Analysis PDF Author: Iva Stavrov
Publisher: American Mathematical Soc.
ISBN: 1470456281
Category : Education
Languages : en
Pages : 259

Get Book Here

Book Description
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.

Gravitational Curvature

Gravitational Curvature PDF Author: Theodore Frankel
Publisher: Courier Corporation
ISBN: 048628915X
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence and stresses the global aspects of cosmology. Suitable for independent study as well as for courses in differential geometry, relativity, and cosmology. 1979 edition.

Spacetime and Geometry

Spacetime and Geometry PDF Author: Sean M. Carroll
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529

Get Book Here

Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.

The Geometry of Spacetime

The Geometry of Spacetime PDF Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

Brakke's Mean Curvature Flow

Brakke's Mean Curvature Flow PDF Author: Yoshihiro Tonegawa
Publisher: Springer
ISBN: 9811370753
Category : Mathematics
Languages : en
Pages : 108

Get Book Here

Book Description
This book explains the notion of Brakke’s mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 ≤ k in

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry PDF Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Geometry II

Geometry II PDF Author: E.B. Vinberg
Publisher: Springer Science & Business Media
ISBN: 3662029014
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
A very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.

Flat and Curved Space-times

Flat and Curved Space-times PDF Author: George Francis Rayner Ellis
Publisher: Clarendon Press
ISBN: 9780198506560
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This text explains special relativity and the basics of general relativity from a geometric viewpoint. Space-time geometry is emphasised throughout, and up-to-date information is provided on black holes, gravitational collapse, and cosmology.

Differential Geometry and Relativity Theory

Differential Geometry and Relativity Theory PDF Author: RichardL. Faber
Publisher: Routledge
ISBN: 135145515X
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity

Riemannian Manifolds

Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.