Current Trends on Knowledge-Based Systems

Current Trends on Knowledge-Based Systems PDF Author: Giner Alor-Hernández
Publisher: Springer
ISBN: 3319519050
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used in different domains. The book offers a valuable resource for PhD students, Master’s and undergraduate students of Information Technology (IT)-related degrees such as Computer Science, Information Systems and Electronic Engineering.

Current Trends on Knowledge-Based Systems

Current Trends on Knowledge-Based Systems PDF Author: Giner Alor-Hernández
Publisher: Springer
ISBN: 3319519050
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used in different domains. The book offers a valuable resource for PhD students, Master’s and undergraduate students of Information Technology (IT)-related degrees such as Computer Science, Information Systems and Electronic Engineering.

Current Trends in Knowledge Acquisition

Current Trends in Knowledge Acquisition PDF Author: Bob Wielinga
Publisher: IOS Press
ISBN: 9789051990362
Category : Computers
Languages : en
Pages : 390

Get Book Here

Book Description
Knowledge acquisition has become a major area of artificial intelligence and cognitive science research. The papers in this book show that the area of knowledge acquisition for knowledge-based systems is still a diverse field in which a large number of research topics are being addressed. However, several main themes run through the papers. First, the issues of integrating knowledge from different sources and K.A. tools is a salient topic in many papers. A second major topic in the papers is that of knowledge modelling. Research in knowledge-based systems emphasises the use of generic models of reasoning and its underlying knowledge. An important trend in the area of knowledge modelling aims at the formalisation of knowledge models. Where the field of knowledge acquisition was without tools and techniques years ago, now there is a rapidly growing body of techniques and tools. Apart from the integrated workbenches already mentioned above, several papers in this book present new tools. Although knowledge acquisition and machine learning have been considered as separate subfields of AI, there is a tendency for the two fields to come together. This publication combines machine learning techniques with more conventional knowledge elicitation techniques. A framework is presented in which reasoning, problem solving and learning together form a knowledge intensive system that can acquire knowledge from its own experience.

Expert Systems

Expert Systems PDF Author: Nikolopoulos
Publisher: CRC Press
ISBN: 9780824799274
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
Offering an introduction to the field of expert/knowledge based systems, this text covers current and emerging trends as well as future research areas. It considers both the system shell and programming environment approaches to expert system development.;College or university bookshops may order five or more copies at a special student price. Price is available on request.

Introduction to Knowledge Systems

Introduction to Knowledge Systems PDF Author: Mark Stefik
Publisher: Elsevier
ISBN: 0080509169
Category : Computers
Languages : en
Pages : 891

Get Book Here

Book Description
Focusing on fundamental scientific and engineering issues, this book communicates the principles of building and using knowledge systems from the conceptual standpoint as well as the practical. Previous treatments of knowledge systems have focused on applications within a particular field, or on symbol-level representations, such as the use of frame and rule representations. Introduction to Knowledge Systems presents fundamentals of symbol-level representations including representations for time, space, uncertainty, and vagueness. It also compares the knowledge-level organizations for three common knowledge-intensive tasks: classification, configuration, and diagnosis. The art of building knowledge systems incorporates computer science theory, programming practice, and psychology. The scope of this book is appropriately broad, ranging from the design of hierarchical search algorithms to techniques for acquiring the task-specific knowledge needed for successful applications. Each chapter proceeds from concepts to applications, and closes with a brief tour of current research topics and open issues. Readers will come away with a solid foundation that will enable them to create real-world knowledge systems using whatever tools and programming languages are most current and appropriate.

Progressive Trends in Knowledge and System-Based Science for Service Innovation

Progressive Trends in Knowledge and System-Based Science for Service Innovation PDF Author: Kosaka, Michitaka
Publisher: IGI Global
ISBN: 1466646640
Category : Business & Economics
Languages : en
Pages : 511

Get Book Here

Book Description
Scientific investigation in the service industry has produced a major effect on productivity and quality in order to lead to new services. With ever-evolving internet technologies and information environments, system science and knowledge science seem to be an effective tool for service innovation in the 21st century. Progressive Trends in Knowledge and System-Based Science for Service Innovation illustrates new approaches to service innovation and new methodologies from the knowledge science and system science perspectives. Practitioners and researchers interested in knowing more about practical theories and successful examples in service science will find this book to be a vital asset to their studies.

Knowledge-Based Systems

Knowledge-Based Systems PDF Author: Rajendra Akerkar
Publisher: Jones & Bartlett Learning
ISBN: 0763776475
Category : Computers
Languages : en
Pages : 375

Get Book Here

Book Description
Knowledge Based Systems (KBS) are systems that use artificial intelligence techniques in the problem solving process. This text is designed to develop an appreciation of KBS and their architecture and to help users understand a broad variety of knowledge based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters are designed to be modular providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material being presented and to stimulate thought and discussion.

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations PDF Author: Jesús Medina
Publisher: Springer
ISBN: 3319914731
Category : Computers
Languages : en
Pages : 835

Get Book Here

Book Description
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cádiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).

Development of Knowledge-Based Systems for Engineering

Development of Knowledge-Based Systems for Engineering PDF Author: Carlo Tasso
Publisher: Springer
ISBN: 370912784X
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
The goal of the volume is twofold: to help engineers to understand the design and development process and the specific techniques utilized for constructing expert systems in engineering and, secondly, to introduce computer specialists to significant applications of knowledge-based techniques in engineering. Among the authors are world famous experts of engineering and knowledge-based systems development.

Case Studies in Secure Computing

Case Studies in Secure Computing PDF Author: Biju Issac
Publisher: CRC Press
ISBN: 1482207060
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
In today’s age of wireless and mobile computing, network and computer security is paramount. Case Studies in Secure Computing: Achievements and Trends gathers the latest research from researchers who share their insights and best practices through illustrative case studies. This book examines the growing security attacks and countermeasures in the stand-alone and networking worlds, along with other pertinent security issues. The many case studies capture a truly wide range of secure computing applications. Surveying the common elements in computer security attacks and defenses, the book: Describes the use of feature selection and fuzzy logic in a decision tree model for intrusion detection Introduces a set of common fuzzy-logic-based security risk estimation techniques with examples Proposes a secure authenticated multiple-key establishment protocol for wireless sensor networks Investigates various malicious activities associated with cloud computing and proposes some countermeasures Examines current and emerging security threats in long-term evolution backhaul and core networks Supplies a brief introduction to application-layer denial-of-service (DoS) attacks Illustrating the security challenges currently facing practitioners, this book presents powerful security solutions proposed by leading researchers in the field. The examination of the various case studies will help to develop the practical understanding required to stay one step ahead of the security threats on the horizon. This book will help those new to the field understand how to mitigate security threats. It will also help established practitioners fine-tune their approach to establishing robust and resilient security for next-generation computing systems.

Handbook of Knowledge Representation

Handbook of Knowledge Representation PDF Author: Frank van Harmelen
Publisher: Elsevier
ISBN: 0080557023
Category : Computers
Languages : en
Pages : 1035

Get Book Here

Book Description
Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily