Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128094311
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale
Crystallization in Multiphase Polymer Systems
Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128094311
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale
Publisher: Elsevier
ISBN: 0128094311
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale
Micro- and Nanostructured Multiphase Polymer Blend Systems
Author: Charef Harrats
Publisher: CRC Press
ISBN: 1420026542
Category : Science
Languages : en
Pages : 455
Book Description
Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces focuses on the formation of phase morphology in polymer blends and copolymers and considers various types of blends including thermosets, thermoplastics, thermoplastic vulcanizates, and structured copolymers. The book carefully debates the processing
Publisher: CRC Press
ISBN: 1420026542
Category : Science
Languages : en
Pages : 455
Book Description
Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces focuses on the formation of phase morphology in polymer blends and copolymers and considers various types of blends including thermosets, thermoplastics, thermoplastic vulcanizates, and structured copolymers. The book carefully debates the processing
Handbook of Multiphase Polymer Systems
Author: Abderrahim Boudenne
Publisher: John Wiley & Sons
ISBN: 1119972884
Category : Technology & Engineering
Languages : en
Pages : 1322
Book Description
Multiphase polymeric systems include a wide range of materials such as composites, blends, alloys, gels, and interpenetrating polymer networks (IPNs). A one-stop reference on multiphase polymer systems, this book fully covers the preparation, properties, and applications of advanced multiphase systems from macro to nano scales. Edited by well-respected academics in the field of multiphase polymer systems, the book includes contributions from leading international experts. An essential resource for plastic and rubber technologists, filler specialists and researchers in fields studying thermal and electrical properties.
Publisher: John Wiley & Sons
ISBN: 1119972884
Category : Technology & Engineering
Languages : en
Pages : 1322
Book Description
Multiphase polymeric systems include a wide range of materials such as composites, blends, alloys, gels, and interpenetrating polymer networks (IPNs). A one-stop reference on multiphase polymer systems, this book fully covers the preparation, properties, and applications of advanced multiphase systems from macro to nano scales. Edited by well-respected academics in the field of multiphase polymer systems, the book includes contributions from leading international experts. An essential resource for plastic and rubber technologists, filler specialists and researchers in fields studying thermal and electrical properties.
Rheo-Physics of Multiphase Polymer Systems
Author: Kai Sondergaard
Publisher: CRC Press
ISBN: 9781566761567
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
FROM THE PREFACE Almost all polymeric systems are subjected to a flow field at least once along the route between preparation and application. . . . There is also an increased interest in predictive models on phase behavior and suitable techniques for characterizing the structure of these systems when subjected to flow. Multiphase polymeric systems are particularly susceptible to flow, which may cause orientation of species, morphological changes, and phase transitions. All these events may, in turn, affect the end product properties, such as permeability, electrical conductivity, [and] mechanical properties. In processing, escalating needs have evolved for optimization and development of novel and more uniform product properties and increased productivity. In order to arrive at an understanding of processing polymeric systems under elastic flow conditions, it is convenient to analyze the basic physical mechanisms under conditions that enable development of predictive models in conjunction with controlled experimentation. . . . In recent years, the science of rheo-physics has evolved and now involves both advanced theories and experimental techniques. Rheo-physics means the rheological, morphological, and thermodynamic behavior of structured polymer systems during flow. . . . In this monograph, the rheo-optical techniques are . . . emphasized. The book gives an introduction to rheo-physics, including fundamentals of theories, and a representative selection of applications of rheo-optical techniques for analyzing multiphase systems. The chapters contain both practical advice for the new experimenter . . . as well as review material for the experienced scientist.
Publisher: CRC Press
ISBN: 9781566761567
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
FROM THE PREFACE Almost all polymeric systems are subjected to a flow field at least once along the route between preparation and application. . . . There is also an increased interest in predictive models on phase behavior and suitable techniques for characterizing the structure of these systems when subjected to flow. Multiphase polymeric systems are particularly susceptible to flow, which may cause orientation of species, morphological changes, and phase transitions. All these events may, in turn, affect the end product properties, such as permeability, electrical conductivity, [and] mechanical properties. In processing, escalating needs have evolved for optimization and development of novel and more uniform product properties and increased productivity. In order to arrive at an understanding of processing polymeric systems under elastic flow conditions, it is convenient to analyze the basic physical mechanisms under conditions that enable development of predictive models in conjunction with controlled experimentation. . . . In recent years, the science of rheo-physics has evolved and now involves both advanced theories and experimental techniques. Rheo-physics means the rheological, morphological, and thermodynamic behavior of structured polymer systems during flow. . . . In this monograph, the rheo-optical techniques are . . . emphasized. The book gives an introduction to rheo-physics, including fundamentals of theories, and a representative selection of applications of rheo-optical techniques for analyzing multiphase systems. The chapters contain both practical advice for the new experimenter . . . as well as review material for the experienced scientist.
Polymers and Multicomponent Polymeric Systems
Author: Jose James
Publisher: CRC Press
ISBN: 0429943466
Category : Science
Languages : en
Pages : 317
Book Description
In recent years, multicomponent polymers have generated much interest due to their excellent properties, unique morphology and high-end applications. Book focusses on thermal, thermo-mechanical and dielectric analysis of polymers and multicomponent polymeric systems like blends, interpenetrating polymeric networks (IPNs), gels, polymer composites, nanocomposites. Through these analyses, it provides an insight into the stability of polymer systems as a function of time, processing and usage. Aimed at polymer chemists, physicists and engineers, it also covers ASTM /ISO and other standards of various measurement techniques for systematic analysis in materials science.
Publisher: CRC Press
ISBN: 0429943466
Category : Science
Languages : en
Pages : 317
Book Description
In recent years, multicomponent polymers have generated much interest due to their excellent properties, unique morphology and high-end applications. Book focusses on thermal, thermo-mechanical and dielectric analysis of polymers and multicomponent polymeric systems like blends, interpenetrating polymeric networks (IPNs), gels, polymer composites, nanocomposites. Through these analyses, it provides an insight into the stability of polymer systems as a function of time, processing and usage. Aimed at polymer chemists, physicists and engineers, it also covers ASTM /ISO and other standards of various measurement techniques for systematic analysis in materials science.
Multiphase Polymer Systems
Author: Andreea Irina Barzic
Publisher: CRC Press
ISBN: 131535098X
Category : Science
Languages : en
Pages : 278
Book Description
Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and theoretical aspects regarding the thermal and electrical transport phenomena and magnetic properties of crucial importance in advanced technologies. It reviews the most recent advances concerning morphological, rheological, interfacial, physical, fire-resistant, thermophysical, and biomedical properties of multiphase polymer systems. Concomitantly the book deals with basic investigation techniques that are sensitive in elucidating the features of each phase. It also discusses the latest research trends that offer new solutions for advanced bio- and nanotechnologies. Introduces an overview of recent studies in the area of multiphase polymer systems, their micro- and nanostructural evolutions in advanced technologies, and provides future outlooks, new challenges and opportunities. Discusses multicomponent structures that offer enhanced physical, mechanical, thermal, electrical, magnetic, and optical properties adapted to current requirements of modern technologies. Covers a wide range of materials, such as composites, blends, alloys, gels and interpenetrating polymer networks. Presents new strategies for controlling the micro- and nanomorphology and the mechanical properties of multiphase polymeric materials. Describes different applications of multiphase polymeric materials in various fields, including automotive, aeronautics and space industry, displays, and medicine.
Publisher: CRC Press
ISBN: 131535098X
Category : Science
Languages : en
Pages : 278
Book Description
Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and theoretical aspects regarding the thermal and electrical transport phenomena and magnetic properties of crucial importance in advanced technologies. It reviews the most recent advances concerning morphological, rheological, interfacial, physical, fire-resistant, thermophysical, and biomedical properties of multiphase polymer systems. Concomitantly the book deals with basic investigation techniques that are sensitive in elucidating the features of each phase. It also discusses the latest research trends that offer new solutions for advanced bio- and nanotechnologies. Introduces an overview of recent studies in the area of multiphase polymer systems, their micro- and nanostructural evolutions in advanced technologies, and provides future outlooks, new challenges and opportunities. Discusses multicomponent structures that offer enhanced physical, mechanical, thermal, electrical, magnetic, and optical properties adapted to current requirements of modern technologies. Covers a wide range of materials, such as composites, blends, alloys, gels and interpenetrating polymer networks. Presents new strategies for controlling the micro- and nanomorphology and the mechanical properties of multiphase polymeric materials. Describes different applications of multiphase polymeric materials in various fields, including automotive, aeronautics and space industry, displays, and medicine.
Multiphase Polylactide Blends
Author: Mohammadreza Nofar
Publisher: Elsevier
ISBN: 0128241519
Category : Science
Languages : en
Pages : 405
Book Description
Multiphase Polylactide Blends: Toward a Sustainable and Green Environment guides the reader through fundamentals, science, preparation, and key areas of innovation in polylactide (PLA) blends. Bio-based polymers, and notably PLA, have not only gained increasing interest as a more sustainable alternative but also bring challenges in terms of mechanical, rheological, thermal and physical properties, processability, shapability, and foamability. The use of blends looks to address these, with the development of new types of economically viable and environmentally friendly systems. This is a valuable book for academic researchers, scientists, and graduate students across bio-based polymers, polymer science, chemistry, and materials science, as well as engineers, R&D professionals, and all those in industry with interest in PLA-based blends, biopolymers, and sustainable materials and products. More specifically, the first three chapters of this book overview the fundamentals of thermoplastic polymers, polymer blends, and structure and properties of PLA. These chapters could technically be used as a valuable textbook on the noted topics. The rest of the chapters inclusively study the fundamentals, investigations, and achievements in PLA-based blends with various types of polymers. These include miscible blends of poly L-lactide and poly D-lactide, binary immiscible/miscible blends of PLA with other thermoplastics and elastomers, PLA-based ternary blends and blend nanocomposites, as well as PLA-based blend foams. Overall, this book provides a thorough and critical overview of the state of the art in PLA-based blends, including significant past and recent advances, with the aim of supporting and shaping further research and industrial application of these materials for the development of a green and sustainable future. - Overviews the fundamentals of thermoplastic polymers, polymer blends, and the structure and properties of PLA. - Provides detailed coverage of the fundamentals and science of PLA blends, including phase miscibility, thermal and mechanical properties, interface and rheological properties, the use of compatibilizers, and phase morphological analysis. - Offers a thorough critical overview of the state of the art in processing and development of PLA-based blends, addressing key challenges and future perspectives. - Covers the latest advances, including PLA-based ternary blends, blend nanocomposites, and PLA-based blend microcellular foams.
Publisher: Elsevier
ISBN: 0128241519
Category : Science
Languages : en
Pages : 405
Book Description
Multiphase Polylactide Blends: Toward a Sustainable and Green Environment guides the reader through fundamentals, science, preparation, and key areas of innovation in polylactide (PLA) blends. Bio-based polymers, and notably PLA, have not only gained increasing interest as a more sustainable alternative but also bring challenges in terms of mechanical, rheological, thermal and physical properties, processability, shapability, and foamability. The use of blends looks to address these, with the development of new types of economically viable and environmentally friendly systems. This is a valuable book for academic researchers, scientists, and graduate students across bio-based polymers, polymer science, chemistry, and materials science, as well as engineers, R&D professionals, and all those in industry with interest in PLA-based blends, biopolymers, and sustainable materials and products. More specifically, the first three chapters of this book overview the fundamentals of thermoplastic polymers, polymer blends, and structure and properties of PLA. These chapters could technically be used as a valuable textbook on the noted topics. The rest of the chapters inclusively study the fundamentals, investigations, and achievements in PLA-based blends with various types of polymers. These include miscible blends of poly L-lactide and poly D-lactide, binary immiscible/miscible blends of PLA with other thermoplastics and elastomers, PLA-based ternary blends and blend nanocomposites, as well as PLA-based blend foams. Overall, this book provides a thorough and critical overview of the state of the art in PLA-based blends, including significant past and recent advances, with the aim of supporting and shaping further research and industrial application of these materials for the development of a green and sustainable future. - Overviews the fundamentals of thermoplastic polymers, polymer blends, and the structure and properties of PLA. - Provides detailed coverage of the fundamentals and science of PLA blends, including phase miscibility, thermal and mechanical properties, interface and rheological properties, the use of compatibilizers, and phase morphological analysis. - Offers a thorough critical overview of the state of the art in processing and development of PLA-based blends, addressing key challenges and future perspectives. - Covers the latest advances, including PLA-based ternary blends, blend nanocomposites, and PLA-based blend microcellular foams.
Polymer Morphology
Author: Qipeng Guo
Publisher: John Wiley & Sons
ISBN: 1118452151
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Publisher: John Wiley & Sons
ISBN: 1118452151
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Synthesis and Modification of Nanostructured Thin Films
Author: Ion N. Mihailescu
Publisher: MDPI
ISBN: 3039284541
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
The Special Issue “Synthesis and Modification of Nanostructured Thin Films” highlights the recent progress in thin film synthesis/modification and characterization. New methods are reviewed for the synthesis and/or modification of thin films based on laser, magnetron, chemical, and other techniques. The obtained thin nanostructures are characterized by complex and complementary techniques. We think that most of proposed methods can be directly applied in production, but some others still need further elaboration for long-term prospective applications in lasers, optics, materials, electronics, informatics, telecommunications, biology, medicine, and probably many other domains. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the field of nanomaterials. We share the conviction that this can serve as a useful tool for updating the literature, but also to aid in the conception of new production and/or research programs. There is plenty of room for further dedicated R&D advances based on new instruments and materials under development.
Publisher: MDPI
ISBN: 3039284541
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
The Special Issue “Synthesis and Modification of Nanostructured Thin Films” highlights the recent progress in thin film synthesis/modification and characterization. New methods are reviewed for the synthesis and/or modification of thin films based on laser, magnetron, chemical, and other techniques. The obtained thin nanostructures are characterized by complex and complementary techniques. We think that most of proposed methods can be directly applied in production, but some others still need further elaboration for long-term prospective applications in lasers, optics, materials, electronics, informatics, telecommunications, biology, medicine, and probably many other domains. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the field of nanomaterials. We share the conviction that this can serve as a useful tool for updating the literature, but also to aid in the conception of new production and/or research programs. There is plenty of room for further dedicated R&D advances based on new instruments and materials under development.
Poly(lactic acid)
Author: Rafael A. Auras
Publisher: John Wiley & Sons
ISBN: 1119767466
Category : Technology & Engineering
Languages : en
Pages : 692
Book Description
POLY(LACTIC ACID) The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.
Publisher: John Wiley & Sons
ISBN: 1119767466
Category : Technology & Engineering
Languages : en
Pages : 692
Book Description
POLY(LACTIC ACID) The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.