Helium Cryogenics

Helium Cryogenics PDF Author: Steven W. Van Sciver
Publisher: Springer Science & Business Media
ISBN: 1441999787
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.

Helium Cryogenics

Helium Cryogenics PDF Author: Steven W. Van Sciver
Publisher: Springer Science & Business Media
ISBN: 1441999787
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.

Physics of Cryogenics

Physics of Cryogenics PDF Author: Bahman Zohuri
Publisher: Elsevier
ISBN: 012814520X
Category : Technology & Engineering
Languages : en
Pages : 728

Get Book Here

Book Description
Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics. - Defines the fundamentals of thermodynamics that are associated with cryogenic processes - Provides an overview of the history of the development of cryogenic technology - Includes new, low temperature tables written by the author - Deals with the application of cryogenics to preserve objects at very low temperature - Explains how cryogenic phenomena work for human cell and human body preservations and new medical approaches

Cryogenics

Cryogenics PDF Author: William E. Bryson
Publisher:
ISBN: 9781569902745
Category : Science
Languages : en
Pages : 210

Get Book Here

Book Description
This important book explains how and why wear resistance in metals and other materials is improved exposure to subzero or deep cold temperatures (cryogenic treatment). While cryogenics is not a recently discovered process, its benefits have not been fully exploited industry. One reason for this neglect is that, until now, there has not been a single source of information that explains how it works, and why it works. This book provides answers to these and other questions including: Which materials can be improved cryogenics? Can the increase in wear resistance be predicted? Should tools be reprocessed after resharpening? Why do in expensive tools perform like expensive ones after processing? How does cryogenics increase tool hardness? Does processing alter the appearance of parts? How can even small shops acquire inexpensive processing equipment? What is the thin film surface layer?

The Art of Cryogenics

The Art of Cryogenics PDF Author: Guglielmo Ventura
Publisher: Elsevier
ISBN: 0080554369
Category : Science
Languages : en
Pages : 379

Get Book Here

Book Description
Cryogenics is the study of low temperature interactions - temperatures well below those existing in the natural universe. The book covers a large spectrum of experimental cases, including basic vacuum techniques, indispensable in cryogenics. Guidance in solving experimental problems and numerous numerical examples are given, as are examples of the applications of cryogenics in such areas as underground detectors and space applications. Updated tables of low-temperature data on materials are also presented, and the book is supplemented with a rich bibliography. Researchers (graduate and above) in the fields of physics, engineering and chemistry with an interest in the technology and applications of low-temperature measurements, will find this book invaluable. - Experiments described in technical detail - Description of newest cryogenic apparatus - Applications in multidisciplinary areas - Data on cryogenic properties of new materials - Current reference review

Cryogenic Engineering, Second Edition, Revised and Expanded

Cryogenic Engineering, Second Edition, Revised and Expanded PDF Author: Thomas Flynn
Publisher: CRC Press
ISBN: 9780824753672
Category : Science
Languages : en
Pages : 912

Get Book Here

Book Description
Written by an engineering consultant with over 48 years of experience in the field, this Second Edition provides a reader-friendly and thorough discussion of the fundamental principles and science of cryogenic engineering including the properties of fluids and solids, refrigeration and liquefaction, insulation, instrumentation, natural gas processing, and safety in cryogenic system design.

Cryogenics

Cryogenics PDF Author: Allyson E. Hayes
Publisher:
ISBN: 9781617613234
Category : Low temperature engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Cryogenics is the study of the production of very low temperature (below -150 °C, -238 °F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and genetic engineering techniques used to improve tolerance to cryopreservation.

Cryogenic Systems

Cryogenic Systems PDF Author: Randall F. Barron
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 720

Get Book Here

Book Description


Thermodynamic Properties of Cryogenic Fluids

Thermodynamic Properties of Cryogenic Fluids PDF Author: Richard T. Jacobsen
Publisher: Springer Science & Business Media
ISBN: 1489917985
Category : Technology & Engineering
Languages : en
Pages : 323

Get Book Here

Book Description
Practicing engineers and scientist will benefit from this book's presentation of the most accurate information on the subject. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. The book is supported by ICMPROPRS - an interactive computer program for the calculation of thermodynamic properties of the cryogenic fluids - that can be downloaded from the World Wide Web.

Cryostat Design

Cryostat Design PDF Author: J.G. Weisend II
Publisher: Springer
ISBN: 3319311506
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are leading experts in the field, most of whom participated in the design of the cryostats being described. The concluding chapter offers an overview of lessons learned and summarises some key hints and tips for practical cryostat design. The book will help the reader to expand their knowledge of many disciplines required for good cryostat design, including the cryogenic properties of materials, heat transfer and thermal insulation, instrumentation, safety, structures and seals.

Cryogenic Process Engineering

Cryogenic Process Engineering PDF Author: Klaus D. Timmerhaus
Publisher: Springer Science & Business Media
ISBN: 1468487566
Category : Science
Languages : en
Pages : 614

Get Book Here

Book Description
Cryogenics, a term commonly used to refer to very low temperatures, had its beginning in the latter half of the last century when man learned, for the first time, how to cool objects to a temperature lower than had ever existed na tu rally on the face of the earth. The air we breathe was first liquefied in 1883 by a Polish scientist named Olszewski. Ten years later he and a British scientist, Sir James Dewar, liquefied hydrogen. Helium, the last of the so-caBed permanent gases, was finally liquefied by the Dutch physicist Kamerlingh Onnes in 1908. Thus, by the beginning of the twentieth century the door had been opened to astrange new world of experimentation in which aB substances, except liquid helium, are solids and where the absolute temperature is only a few microdegrees away. However, the point on the temperature scale at which refrigeration in the ordinary sense of the term ends and cryogenics begins has ne ver been weB defined. Most workers in the field have chosen to restrict cryogenics to a tem perature range below -150°C (123 K). This is a reasonable dividing line since the normal boiling points of the more permanent gases, such as helium, hydrogen, neon, nitrogen, oxygen, and air, lie below this temperature, while the more common refrigerants have boiling points that are above this temperature. Cryogenic engineering is concerned with the design and development of low-temperature systems and components.