Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9789810246594
Category : Science
Languages : en
Pages : 526
Book Description
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-î dimensions, where they possess pole terms in 1/î. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Pad and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent à governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-î dimensions, and improved ratio tests in high-temperature expansions of lattice models.
Critical Properties of [Greek Letter Phi]4-theories
Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9789810246594
Category : Science
Languages : en
Pages : 526
Book Description
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-î dimensions, where they possess pole terms in 1/î. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Pad and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent à governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-î dimensions, and improved ratio tests in high-temperature expansions of lattice models.
Publisher: World Scientific
ISBN: 9789810246594
Category : Science
Languages : en
Pages : 526
Book Description
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-î dimensions, where they possess pole terms in 1/î. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Pad and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent à governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-î dimensions, and improved ratio tests in high-temperature expansions of lattice models.
Critical Properties Of Phi4- Theories
Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9814490792
Category : Science
Languages : en
Pages : 513
Book Description
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-ε dimensions, where they possess pole terms in 1/ε. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Padé and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent α governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-ε dimensions, and improved ratio tests in high-temperature expansions of lattice models.
Publisher: World Scientific
ISBN: 9814490792
Category : Science
Languages : en
Pages : 513
Book Description
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-ε dimensions, where they possess pole terms in 1/ε. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Padé and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent α governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-ε dimensions, and improved ratio tests in high-temperature expansions of lattice models.
An Introduction To Quantum Field Theory
Author: Michael E. Peskin
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Quantum Field Theory
Author: Kerson Huang
Publisher: John Wiley & Sons
ISBN: 3527617388
Category : Science
Languages : en
Pages : 446
Book Description
A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with advanced quantum mechanics as well as physicists with an interest in theoretical physics. It features: * Coverage of quantum electrodynamics with practical calculations and a discussion of perturbative renormalization * A discussion of the Feynman path integrals and a host of current subjects, including the physical approach to renormalization, spontaneous symmetry breaking and superfluidity, and topological excitations * Nineteen self-contained chapters with exercises, supplemented with graphs and charts
Publisher: John Wiley & Sons
ISBN: 3527617388
Category : Science
Languages : en
Pages : 446
Book Description
A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with advanced quantum mechanics as well as physicists with an interest in theoretical physics. It features: * Coverage of quantum electrodynamics with practical calculations and a discussion of perturbative renormalization * A discussion of the Feynman path integrals and a host of current subjects, including the physical approach to renormalization, spontaneous symmetry breaking and superfluidity, and topological excitations * Nineteen self-contained chapters with exercises, supplemented with graphs and charts
Relativistic Quantum Mechanics and Field Theory
Author: Franz Gross
Publisher: John Wiley & Sons
ISBN: 3527617345
Category : Science
Languages : en
Pages : 643
Book Description
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Publisher: John Wiley & Sons
ISBN: 3527617345
Category : Science
Languages : en
Pages : 643
Book Description
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Rotating Relativistic Stars
Author: John L. Friedman
Publisher: Cambridge University Press
ISBN: 1107310601
Category : Science
Languages : en
Pages : 435
Book Description
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
Publisher: Cambridge University Press
ISBN: 1107310601
Category : Science
Languages : en
Pages : 435
Book Description
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
Physics of Neutron Stars
Author: A. M. Kaminker
Publisher: Nova Biomedical Books
ISBN:
Category : Science
Languages : en
Pages : 298
Book Description
Physics of Neutron Stars
Publisher: Nova Biomedical Books
ISBN:
Category : Science
Languages : en
Pages : 298
Book Description
Physics of Neutron Stars
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Naturalness, String Landscape and Multiverse
Author: Arthur Hebecker
Publisher: Springer Nature
ISBN: 3030651517
Category : Science
Languages : en
Pages : 321
Book Description
This book presents a string-theoretic approach to new ideas in particle physics, also known as Physics Beyond the Standard Model, and to cosmology. The concept of Naturalness and its apparent violation by the low electroweak scale and the small cosmological constant is emphasized. It is shown that string theory, through its multitude of solutions, known as the landscape, offers a partial resolution to these naturalness problems as well as suggesting more speculative possibilities like that of a multiverse. The book is based on a one-semester course, as such, it has a pedagogical approach, is self-contained and includes many exercises with solutions. Notably, the basics of string theory are introduced as part of the lectures. These notes are aimed at graduate students with a solid background in quantum field theory, as well as at young researchers from theoretical particle physics to mathematical physics. This text also benefits students who are in the process of studying string theory at a deeper level. In this case, the volume serves as additional reading beyond a formal string theory course.
Publisher: Springer Nature
ISBN: 3030651517
Category : Science
Languages : en
Pages : 321
Book Description
This book presents a string-theoretic approach to new ideas in particle physics, also known as Physics Beyond the Standard Model, and to cosmology. The concept of Naturalness and its apparent violation by the low electroweak scale and the small cosmological constant is emphasized. It is shown that string theory, through its multitude of solutions, known as the landscape, offers a partial resolution to these naturalness problems as well as suggesting more speculative possibilities like that of a multiverse. The book is based on a one-semester course, as such, it has a pedagogical approach, is self-contained and includes many exercises with solutions. Notably, the basics of string theory are introduced as part of the lectures. These notes are aimed at graduate students with a solid background in quantum field theory, as well as at young researchers from theoretical particle physics to mathematical physics. This text also benefits students who are in the process of studying string theory at a deeper level. In this case, the volume serves as additional reading beyond a formal string theory course.
Quantum Field Theory and Condensed Matter
Author: Ramamurti Shankar
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.