Cover Crop Introduction Into Corn (Zea Mays L.)-Soybean (Glycine Max L.) Cropping Systems

Cover Crop Introduction Into Corn (Zea Mays L.)-Soybean (Glycine Max L.) Cropping Systems PDF Author: Angela M. Bastidas
Publisher:
ISBN: 9780355684018
Category : Corn
Languages : en
Pages : 0

Get Book Here

Book Description
Fall-seeded cover crops are limited by the short growing season remaining between harvest and planting the succeeding crop. To address this challenge, we considered two alternative systems for introducing cover crops into corn (Zea mays L.)- soybean (Glycine max L.) cropping systems. The first alternative was to interseed the cover crops species with corn at specific developmental stages. We evaluated the effect on corn, cover crop biomass, and the subsequent soybean crop. No detrimental effects on corn were found when cover crops were interseeded at or after corn canopy closure due to the limited cover crop biomass produced during the growing season. However, corn was negatively affected with cover crops interseed at corn planting. Cover crops interseeded at canopy closure did not establish due to corn canopy shading. Cover crops interseeded at or after R5 (dent) produced greater biomass the following spring than in the fall, and cover crops interseeded at R5 and R6 (physiological maturity) produced greater biomass than cover crops interseeded at corn harvest. This indicated that the interseeding by broadcasting cover crops can be successful for improving biomass production. The second alternative was to modify corn management practices such as planting date, plant population, and comparative corn relative maturity (CRM) to allow earlier cover crop seeding dates. We attempted to understand the impact on corn yield, cover crop biomass production, and the subsequent soybean crop. Early- and early-to-medium-maturity hybrids allowed corn harvest about one month earlier and medium-maturity hybrids about 15 d earlier than late-maturity hybrids. No differences in corn yield were observed between the medium- and late-maturity hybrids planted at the earlier planting date, with a 107 CRM hybrid planted early having the highest yield of 16.0 Mg ha-1. The greatest cover crop biomass production occurred with the earliest cover crop planting date. Cover crop biomass increased with air temperature, which was measured with growing degree days (GDDC). This indicates that changes in planting date and corn CRM hybrids are important to increase the potential for use of cover crops. The subsequent soybean yield was not affected by cover crops in either alternative.

Cover Crop Introduction Into Corn (Zea Mays L.)-Soybean (Glycine Max L.) Cropping Systems

Cover Crop Introduction Into Corn (Zea Mays L.)-Soybean (Glycine Max L.) Cropping Systems PDF Author: Angela M. Bastidas
Publisher:
ISBN: 9780355684018
Category : Corn
Languages : en
Pages : 0

Get Book Here

Book Description
Fall-seeded cover crops are limited by the short growing season remaining between harvest and planting the succeeding crop. To address this challenge, we considered two alternative systems for introducing cover crops into corn (Zea mays L.)- soybean (Glycine max L.) cropping systems. The first alternative was to interseed the cover crops species with corn at specific developmental stages. We evaluated the effect on corn, cover crop biomass, and the subsequent soybean crop. No detrimental effects on corn were found when cover crops were interseeded at or after corn canopy closure due to the limited cover crop biomass produced during the growing season. However, corn was negatively affected with cover crops interseed at corn planting. Cover crops interseeded at canopy closure did not establish due to corn canopy shading. Cover crops interseeded at or after R5 (dent) produced greater biomass the following spring than in the fall, and cover crops interseeded at R5 and R6 (physiological maturity) produced greater biomass than cover crops interseeded at corn harvest. This indicated that the interseeding by broadcasting cover crops can be successful for improving biomass production. The second alternative was to modify corn management practices such as planting date, plant population, and comparative corn relative maturity (CRM) to allow earlier cover crop seeding dates. We attempted to understand the impact on corn yield, cover crop biomass production, and the subsequent soybean crop. Early- and early-to-medium-maturity hybrids allowed corn harvest about one month earlier and medium-maturity hybrids about 15 d earlier than late-maturity hybrids. No differences in corn yield were observed between the medium- and late-maturity hybrids planted at the earlier planting date, with a 107 CRM hybrid planted early having the highest yield of 16.0 Mg ha-1. The greatest cover crop biomass production occurred with the earliest cover crop planting date. Cover crop biomass increased with air temperature, which was measured with growing degree days (GDDC). This indicates that changes in planting date and corn CRM hybrids are important to increase the potential for use of cover crops. The subsequent soybean yield was not affected by cover crops in either alternative.

Effect of Cover Crops on Nutrient Dynamics and Soil Properties in Corn-soybean Rotation in Southern Illinois

Effect of Cover Crops on Nutrient Dynamics and Soil Properties in Corn-soybean Rotation in Southern Illinois PDF Author: Gurbir Singh
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 490

Get Book Here

Book Description
Corn (Zea mays L.) and soybean ( Glycine max L.) production in the Midwest US can result in significant nutrient leaching to groundwater and surface waters, which contributes to eutrophication and hypoxia in the Gulf of Mexico. A promising strategy to control nutrient leaching and sediment runoff loss during winter fallow period is the use of cover crops (CCs). In southern Illinois, CCs are not widely adopted by farmers due to economic constraints and the lack of scientific data that supports benefits of incorporating CCs into the corn-soybean rotation. This doctoral dissertation addresses the critical question of the feasibility of the use of CCs in southern Illinois and is divided into three overarching research studies with different objectives divided into six research chapters. Research study 1 was a field experiment conducted from 2013 to 2017 to examine the effect of CCs (CC vs noCC) under two tillage systems [(no-tillage (NT) and conventional tillage (CT)] on aboveground plant attributes [dry matter yield, C:N ratio and nitrogen uptake (N uptake)], crop yields, available soil N content and N leaching in the vadose zone. The experimental layout was a randomized design with three rotations including corn-noCC-soybean-noCC [CncSnc], corn-cereal rye (Secale cereale L.) -soybean-hairy vetch (Vicia villosa R.) [CcrShv], and corn-cereal rye-soybean-oats+radish (Avena sativa L. + Raphanus sativus L.) [CcrSor] and two tillage systems. Soil samples collected after corn or soybean harvest and CC termination were analyzed for standard soil fertility parameters. Pan lysimeters installed below the 'A' horizon with depth varying from 22 to 30 cm were used for measuring soil solution nutrient concentration on weekly or biweekly basis depending on the precipitation. In NT system, the corn yield was 14% greater with CcrShv compared to CncSnc, whereas no significant difference existed in corn yield due to CC treatments within CT. Both CC treatments under NT reduced soybean yield by 24 to 27% compared to noCC. The rotations CcrShv and CcrSor with hairy vetch and oats+radish as preceding CCs resulted in 89% (37.73 vs 19.96 kg ha-1) and 68% (33.46 vs 19.96 kg ha-1) more nitrate-N (NO 3-N) leaching than the CncSnc during cash crop season 2015. During the CC season in spring 2016, cereal rye CC in CcrShv and CcrSor reduced the NO 3-N leaching by 84% (0.68 kg ha-1) and 78% (0.63 kg ha-1) compared to the CncSnc, respectively, under the CT system. Overall, our results indicated that the CT system had greater N leaching losses compared to NT system due to higher N availability in the tilled soil profile. The goal of the second research study was to understand the mechanisms of N cycling by CCs. We applied 15N labeled urea fertilizer (9.2% atom) to corn that followed hairy vetch and noCC in May 2017 to evaluate the contribution of fertilizer and soil organic matter to N leaching and quantify the 15N content of surface runoff after storm events. During the 2017 corn season, repeated soil samples were collected and analyzed for 15N fertilizer recovery in soil at three depths. 15N recovery was higher in the corn that had hairy vetch as the preceding CC than the corn that had noCC by 13.13 and 3.68 kg ha-1 on soil sampling events of 7 and 21 days after planting of corn, respectively, at the depth 15-30 cm. Overall, the cumulative loss of 15NO 3-N during corn season 2017 was

Cover Crop and Soil Amendment Effects on Carbon Sequestration in a Silage Corn-soybean Cropping System

Cover Crop and Soil Amendment Effects on Carbon Sequestration in a Silage Corn-soybean Cropping System PDF Author: Bradley Eric Fronning
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 222

Get Book Here

Book Description


Influence of Tillage, Cover Crop and Herbicide Regime on Corn (Zea Mays) and Soybean (Glycine Max) Weed Management and Yield

Influence of Tillage, Cover Crop and Herbicide Regime on Corn (Zea Mays) and Soybean (Glycine Max) Weed Management and Yield PDF Author: Troy Don Klingaman
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 194

Get Book Here

Book Description


Cotton Production

Cotton Production PDF Author: Khawar Jabran
Publisher: John Wiley & Sons
ISBN: 1119385512
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
Provides a comprehensive overview of the role of cotton in the economy and cotton production around the world This book offers a complete look at the world’s largest fiber crop: cotton. It examines its effect on the global economy—its uses and products, harvesting and processing, as well as the major challenges and their solutions, recent trends, and modern technologies involved in worldwide production of cotton. Cotton Production presents recent developments achieved by major cotton producing regions around the world, including China, India, USA, Pakistan, Turkey and Europe, South America, Central Asia, and Australia. In addition to origin and history, it discusses the recent advances in management practices, as well as the agronomic challenges and the solutions in the major cotton producing areas of the world. Keeping a focus on global context, the book provides sufficient details regarding the management of cotton crops. These details are not limited to the choice of cultivar, soil management, fertilizer and water management, pest control, cotton harvesting, and processing. The first book to cover all aspects of cotton production in a global context Details the role of cotton in the economy, the uses and products of cotton, and its harvesting and processing Discusses the current state of cotton management practices and issues within and around the world’s cotton producing areas Provides insight into the ways to improve cotton productivity in order to keep pace with the growing needs of an increasing population Cotton Production is an essential book for students taking courses in agronomy and cropping systems as well as a reference for agricultural advisors, extension specialists, and professionals throughout the industry.

Intercropping and Monoculture Studies on Soybeans (Glycine Max L.) and Corn (Zea Mays L.)

Intercropping and Monoculture Studies on Soybeans (Glycine Max L.) and Corn (Zea Mays L.) PDF Author: Noah Ephron Nyirenda
Publisher:
ISBN:
Category : Soybean
Languages : en
Pages : 66

Get Book Here

Book Description


A Broad-scale Characterization of Corn (Zea Mays)-soybean (Glycine Max) Intercropping as a Sustainable-intensive Cropping Practice

A Broad-scale Characterization of Corn (Zea Mays)-soybean (Glycine Max) Intercropping as a Sustainable-intensive Cropping Practice PDF Author: Meaghan Wilton
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 251

Get Book Here

Book Description
Sustainable-intensification (SI) is known as a strategy to enhance agriculture productivity, while minimizing negative impacts on the environment, and promoting social benefits. The SI concept broadened over the years to cover a wide range of agriculture systems and sustainability issues. Recently, literature reviews revealed that SI research has often failed to address all aspects of the SI concept, specifically social, economic and political dimensions. Influenced by previous SI literature, this dissertation presents original research for conducting interdisciplinary broad-scale SI research. A mixed-method approach influenced by Farming System Research was used, to determine whether modernized corn-soybean intercropping was a suitable SI cropping practice for the southeast Buenos Aires (SEBA) region of the Argentine Pampas. Corn-soybean intercropping was assessed through the incorporation of four studies that each differed in scale, scope and methodology.

Managing Cover Crops Profitably (3rd Ed. )

Managing Cover Crops Profitably (3rd Ed. ) PDF Author: Andy Clark
Publisher: DIANE Publishing
ISBN: 1437903797
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Cover crops slow erosion, improve soil, smother weeds, enhance nutrient and moisture availability, help control many pests and bring a host of other benefits to your farm. At the same time, they can reduce costs, increase profits and even create new sources of income. You¿ll reap dividends on your cover crop investments for years, since their benefits accumulate over the long term. This book will help you find which ones are right for you. Captures farmer and other research results from the past ten years. The authors verified the info. from the 2nd ed., added new results and updated farmer profiles and research data, and added 2 chap. Includes maps and charts, detailed narratives about individual cover crop species, and chap. about aspects of cover cropping.

Intensive Management Studies with Corn (Zea Mays L.) and Soybeans (Glycine Max L. Merrill) and Resulting Yield and Nutrient Composition

Intensive Management Studies with Corn (Zea Mays L.) and Soybeans (Glycine Max L. Merrill) and Resulting Yield and Nutrient Composition PDF Author: Jonathan Glen Dahl
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 240

Get Book Here

Book Description


Economic and Risk Implications of Tillage and Rotation Systems in Corn (Zea Mays L.) and Soybean [Glycine Max(L.)Merr.]

Economic and Risk Implications of Tillage and Rotation Systems in Corn (Zea Mays L.) and Soybean [Glycine Max(L.)Merr.] PDF Author: Bruce A. Burger
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Get Book Here

Book Description