Author: Petar Djuric
Publisher: Academic Press
ISBN: 0128136782
Category : Computers
Languages : en
Pages : 868
Book Description
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Cooperative and Graph Signal Processing
Author: Petar Djuric
Publisher: Academic Press
ISBN: 0128136782
Category : Computers
Languages : en
Pages : 868
Book Description
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Publisher: Academic Press
ISBN: 0128136782
Category : Computers
Languages : en
Pages : 868
Book Description
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Vertex-Frequency Analysis of Graph Signals
Author: Ljubiša Stanković
Publisher: Springer
ISBN: 3030035743
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
This book introduces new methods to analyze vertex-varying graph signals. In many real-world scenarios, the data sensing domain is not a regular grid, but a more complex network that consists of sensing points (vertices) and edges (relating the sensing points). Furthermore, sensing geometry or signal properties define the relation among sensed signal points. Even for the data sensed in the well-defined time or space domain, the introduction of new relationships among the sensing points may produce new insights in the analysis and result in more advanced data processing techniques. The data domain, in these cases and discussed in this book, is defined by a graph. Graphs exploit the fundamental relations among the data points. Processing of signals whose sensing domains are defined by graphs resulted in graph data processing as an emerging field in signal processing. Although signal processing techniques for the analysis of time-varying signals are well established, the corresponding graph signal processing equivalent approaches are still in their infancy. This book presents novel approaches to analyze vertex-varying graph signals. The vertex-frequency analysis methods use the Laplacian or adjacency matrix to establish connections between vertex and spectral (frequency) domain in order to analyze local signal behavior where edge connections are used for graph signal localization. The book applies combined concepts from time-frequency and wavelet analyses of classical signal processing to the analysis of graph signals. Covering analytical tools for vertex-varying applications, this book is of interest to researchers and practitioners in engineering, science, neuroscience, genome processing, just to name a few. It is also a valuable resource for postgraduate students and researchers looking to expand their knowledge of the vertex-frequency analysis theory and its applications. The book consists of 15 chapters contributed by 41 leading researches in the field.
Publisher: Springer
ISBN: 3030035743
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
This book introduces new methods to analyze vertex-varying graph signals. In many real-world scenarios, the data sensing domain is not a regular grid, but a more complex network that consists of sensing points (vertices) and edges (relating the sensing points). Furthermore, sensing geometry or signal properties define the relation among sensed signal points. Even for the data sensed in the well-defined time or space domain, the introduction of new relationships among the sensing points may produce new insights in the analysis and result in more advanced data processing techniques. The data domain, in these cases and discussed in this book, is defined by a graph. Graphs exploit the fundamental relations among the data points. Processing of signals whose sensing domains are defined by graphs resulted in graph data processing as an emerging field in signal processing. Although signal processing techniques for the analysis of time-varying signals are well established, the corresponding graph signal processing equivalent approaches are still in their infancy. This book presents novel approaches to analyze vertex-varying graph signals. The vertex-frequency analysis methods use the Laplacian or adjacency matrix to establish connections between vertex and spectral (frequency) domain in order to analyze local signal behavior where edge connections are used for graph signal localization. The book applies combined concepts from time-frequency and wavelet analyses of classical signal processing to the analysis of graph signals. Covering analytical tools for vertex-varying applications, this book is of interest to researchers and practitioners in engineering, science, neuroscience, genome processing, just to name a few. It is also a valuable resource for postgraduate students and researchers looking to expand their knowledge of the vertex-frequency analysis theory and its applications. The book consists of 15 chapters contributed by 41 leading researches in the field.
Introduction to Graph Signal Processing
Author: Antonio Ortega
Publisher: Cambridge University Press
ISBN: 1108640176
Category : Technology & Engineering
Languages : en
Pages :
Book Description
An intuitive and accessible text explaining the fundamentals and applications of graph signal processing. Requiring only an elementary understanding of linear algebra, it covers both basic and advanced topics, including node domain processing, graph signal frequency, sampling, and graph signal representations, as well as how to choose a graph. Understand the basic insights behind key concepts and learn how graphs can be associated to a range of specific applications across physical, biological and social networks, distributed sensor networks, image and video processing, and machine learning. With numerous exercises and Matlab examples to help put knowledge into practice, and a solutions manual available online for instructors, this unique text is essential reading for graduate and senior undergraduate students taking courses on graph signal processing, signal processing, information processing, and data analysis, as well as researchers and industry professionals.
Publisher: Cambridge University Press
ISBN: 1108640176
Category : Technology & Engineering
Languages : en
Pages :
Book Description
An intuitive and accessible text explaining the fundamentals and applications of graph signal processing. Requiring only an elementary understanding of linear algebra, it covers both basic and advanced topics, including node domain processing, graph signal frequency, sampling, and graph signal representations, as well as how to choose a graph. Understand the basic insights behind key concepts and learn how graphs can be associated to a range of specific applications across physical, biological and social networks, distributed sensor networks, image and video processing, and machine learning. With numerous exercises and Matlab examples to help put knowledge into practice, and a solutions manual available online for instructors, this unique text is essential reading for graduate and senior undergraduate students taking courses on graph signal processing, signal processing, information processing, and data analysis, as well as researchers and industry professionals.
Graph Theoretic Methods in Multiagent Networks
Author: Mehran Mesbahi
Publisher: Princeton University Press
ISBN: 1400835356
Category : Mathematics
Languages : en
Pages : 424
Book Description
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA
Publisher: Princeton University Press
ISBN: 1400835356
Category : Mathematics
Languages : en
Pages : 424
Book Description
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA
Fog Radio Access Networks (F-RAN)
Author: Mugen Peng
Publisher: Springer Nature
ISBN: 3030507351
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
This book provides a comprehensive introduction of Fog Radio Access Networks (F-RANs), from both academic and industry perspectives. The authors first introduce the network architecture and the frameworks of network management and resource allocation for F-RANs. They then discuss the recent academic research achievements of F-RANs, such as the analytical results of theoretical performance limits and optimization theory-based resource allocation techniques. Meanwhile, they discuss the application and implementations of F-RANs, including the latest standardization procedure, and the prototype and test bed design. The book is concluded by summarizing the existing open issues and future trends of F-RANs. Includes the latest theoretical and technological research achievements of F-RANs, also discussing existing open issues and future trends of F-RANs toward 6G from an interdisciplinary perspective; Provides commonly-used tools for research and development of F-RANs such as open resource projects for implementing prototypes and test beds; Includes examples of prototype and test bed design and gives tools to evaluate the performance of F-RANs in simulations and experimental circumstances.
Publisher: Springer Nature
ISBN: 3030507351
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
This book provides a comprehensive introduction of Fog Radio Access Networks (F-RANs), from both academic and industry perspectives. The authors first introduce the network architecture and the frameworks of network management and resource allocation for F-RANs. They then discuss the recent academic research achievements of F-RANs, such as the analytical results of theoretical performance limits and optimization theory-based resource allocation techniques. Meanwhile, they discuss the application and implementations of F-RANs, including the latest standardization procedure, and the prototype and test bed design. The book is concluded by summarizing the existing open issues and future trends of F-RANs. Includes the latest theoretical and technological research achievements of F-RANs, also discussing existing open issues and future trends of F-RANs toward 6G from an interdisciplinary perspective; Provides commonly-used tools for research and development of F-RANs such as open resource projects for implementing prototypes and test beds; Includes examples of prototype and test bed design and gives tools to evaluate the performance of F-RANs in simulations and experimental circumstances.
Signal Processing and Machine Learning Theory
Author: Paulo S.R. Diniz
Publisher: Elsevier
ISBN: 032397225X
Category : Technology & Engineering
Languages : en
Pages : 1236
Book Description
Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge
Publisher: Elsevier
ISBN: 032397225X
Category : Technology & Engineering
Languages : en
Pages : 1236
Book Description
Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge
Online Learning and Adaptive Filters
Author: Paulo S. R. Diniz
Publisher: Cambridge University Press
ISBN: 1108902243
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
Learn to solve the unprecedented challenges facing Online Learning and Adaptive Signal Processing in this concise, intuitive text. The ever-increasing amount of data generated every day requires new strategies to tackle issues such as: combining data from a large number of sensors; improving spectral usage, utilizing multiple-antennas with adaptive capabilities; or learning from signals placed on graphs, generating unstructured data. Solutions to all of these and more are described in a condensed and unified way, enabling you to expose valuable information from data and signals in a fast and economical way. The up-to-date techniques explained here can be implemented in simple electronic hardware, or as part of multi-purpose systems. Also featuring alternative explanations for online learning, including newly developed methods and data selection, and several easily implemented algorithms, this one-of-a-kind book is an ideal resource for graduate students, researchers, and professionals in online learning and adaptive filtering.
Publisher: Cambridge University Press
ISBN: 1108902243
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
Learn to solve the unprecedented challenges facing Online Learning and Adaptive Signal Processing in this concise, intuitive text. The ever-increasing amount of data generated every day requires new strategies to tackle issues such as: combining data from a large number of sensors; improving spectral usage, utilizing multiple-antennas with adaptive capabilities; or learning from signals placed on graphs, generating unstructured data. Solutions to all of these and more are described in a condensed and unified way, enabling you to expose valuable information from data and signals in a fast and economical way. The up-to-date techniques explained here can be implemented in simple electronic hardware, or as part of multi-purpose systems. Also featuring alternative explanations for online learning, including newly developed methods and data selection, and several easily implemented algorithms, this one-of-a-kind book is an ideal resource for graduate students, researchers, and professionals in online learning and adaptive filtering.
Communications, Signal Processing, and Systems
Author: Qilian Liang
Publisher: Springer Nature
ISBN: 981992362X
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This book brings together papers presented at the 2022 International Conference on Communications, Signal Processing, and Systems, online, July 23-24, 2022, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from communications, signal processing and systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD and DOE).
Publisher: Springer Nature
ISBN: 981992362X
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This book brings together papers presented at the 2022 International Conference on Communications, Signal Processing, and Systems, online, July 23-24, 2022, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from communications, signal processing and systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD and DOE).
Cooperative Design, Visualization, and Engineering
Author: Yuhua Luo
Publisher:
ISBN: 9783030882082
Category :
Languages : en
Pages : 0
Book Description
This book constitutes the proceedings of the 18th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2021, held in October 2021. Due to COVId-19 pandemic the conference was held virtually. The 25 full papers and 9 short papers presented were carefully reviewed and selected from 69 submissions. The achievement, progress and future challenges are reported in areas such as health care, industrial design, banking IT systems, cultural activities support, operational maritime cybersecurity assurance, emotion communication, and social network data analytics.
Publisher:
ISBN: 9783030882082
Category :
Languages : en
Pages : 0
Book Description
This book constitutes the proceedings of the 18th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2021, held in October 2021. Due to COVId-19 pandemic the conference was held virtually. The 25 full papers and 9 short papers presented were carefully reviewed and selected from 69 submissions. The achievement, progress and future challenges are reported in areas such as health care, industrial design, banking IT systems, cultural activities support, operational maritime cybersecurity assurance, emotion communication, and social network data analytics.
Signal Processing for Cognitive Radios
Author: Sudharman K. Jayaweera
Publisher: John Wiley & Sons
ISBN: 1118986768
Category : Technology & Engineering
Languages : en
Pages : 763
Book Description
This book examines signal processing techniques for cognitive radios. The book is divided into three parts: Part I, is an introduction to cognitive radios and presents a history of the cognitive radio (CR), and introduce their architecture, functionalities, ideal aspects, hardware platforms, and state-of-the-art developments. Dr. Jayaweera also introduces the specific type of CR that has gained the most research attention in recent years: the CR for Dynamic Spectrum Access (DSA). Part II of the book, Theoretical Foundations, guides the reader from classical to modern theories on statistical signal processing and inference. The author addresses detection and estimation theory, power spectrum estimation, classification, adaptive algorithms (machine learning), and inference and decision processes. Applications to the signal processing, inference and learning problems encountered in cognitive radios are interspersed throughout with concrete and accessible examples. Part III of the book, Signal Processing in Radios, identifies the key signal processing, inference, and learning tasks to be performed by wideband autonomous cognitive radios. The author provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS cognitive radios.
Publisher: John Wiley & Sons
ISBN: 1118986768
Category : Technology & Engineering
Languages : en
Pages : 763
Book Description
This book examines signal processing techniques for cognitive radios. The book is divided into three parts: Part I, is an introduction to cognitive radios and presents a history of the cognitive radio (CR), and introduce their architecture, functionalities, ideal aspects, hardware platforms, and state-of-the-art developments. Dr. Jayaweera also introduces the specific type of CR that has gained the most research attention in recent years: the CR for Dynamic Spectrum Access (DSA). Part II of the book, Theoretical Foundations, guides the reader from classical to modern theories on statistical signal processing and inference. The author addresses detection and estimation theory, power spectrum estimation, classification, adaptive algorithms (machine learning), and inference and decision processes. Applications to the signal processing, inference and learning problems encountered in cognitive radios are interspersed throughout with concrete and accessible examples. Part III of the book, Signal Processing in Radios, identifies the key signal processing, inference, and learning tasks to be performed by wideband autonomous cognitive radios. The author provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS cognitive radios.