Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 9780821842362
Category : Mathematics
Languages : en
Pages : 92
Book Description
This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel su This volume is recommended for independent study and is suitable for graduate students and researchers interested in symplectic geometry, algebraic geometry, and geometric combinatorics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
Convexity Properties of Hamiltonian Group Actions
Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 9780821842362
Category : Mathematics
Languages : en
Pages : 92
Book Description
This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel su This volume is recommended for independent study and is suitable for graduate students and researchers interested in symplectic geometry, algebraic geometry, and geometric combinatorics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
Publisher: American Mathematical Soc.
ISBN: 9780821842362
Category : Mathematics
Languages : en
Pages : 92
Book Description
This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel su This volume is recommended for independent study and is suitable for graduate students and researchers interested in symplectic geometry, algebraic geometry, and geometric combinatorics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
Moment Maps, Cobordisms, and Hamiltonian Group Actions
Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821805029
Category : Mathematics
Languages : en
Pages : 362
Book Description
During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.
Publisher: American Mathematical Soc.
ISBN: 0821805029
Category : Mathematics
Languages : en
Pages : 362
Book Description
During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.
Hamiltonian Group Actions and Equivariant Cohomology
Author: Shubham Dwivedi
Publisher: Springer Nature
ISBN: 3030272273
Category : Mathematics
Languages : en
Pages : 140
Book Description
This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.
Publisher: Springer Nature
ISBN: 3030272273
Category : Mathematics
Languages : en
Pages : 140
Book Description
This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.
Poisson Geometry in Mathematics and Physics
Author: Giuseppe Dito
Publisher: American Mathematical Soc.
ISBN: 0821844237
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Publisher: American Mathematical Soc.
ISBN: 0821844237
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems
Author: Tudor S. Ratiu
Publisher: American Mathematical Society
ISBN: 147046439X
Category : Mathematics
Languages : en
Pages : 102
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 147046439X
Category : Mathematics
Languages : en
Pages : 102
Book Description
View the abstract.
Singularity Theory for Non-Twist KAM Tori
Author: A. González-Enríquez
Publisher: American Mathematical Soc.
ISBN: 0821890182
Category : Mathematics
Languages : en
Pages : 128
Book Description
In this monograph the authors introduce a new method to study bifurcations of KAM tori with fixed Diophantine frequency in parameter-dependent Hamiltonian systems. It is based on Singularity Theory of critical points of a real-valued function which the authors call the potential. The potential is constructed in such a way that: nondegenerate critical points of the potential correspond to twist invariant tori (i.e. with nondegenerate torsion) and degenerate critical points of the potential correspond to non-twist invariant tori. Hence, bifurcating points correspond to non-twist tori.
Publisher: American Mathematical Soc.
ISBN: 0821890182
Category : Mathematics
Languages : en
Pages : 128
Book Description
In this monograph the authors introduce a new method to study bifurcations of KAM tori with fixed Diophantine frequency in parameter-dependent Hamiltonian systems. It is based on Singularity Theory of critical points of a real-valued function which the authors call the potential. The potential is constructed in such a way that: nondegenerate critical points of the potential correspond to twist invariant tori (i.e. with nondegenerate torsion) and degenerate critical points of the potential correspond to non-twist invariant tori. Hence, bifurcating points correspond to non-twist tori.
Introduction to Symplectic Topology
Author: Dusa McDuff
Publisher: Oxford University Press
ISBN: 0192514016
Category : Mathematics
Languages : en
Pages : 637
Book Description
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Publisher: Oxford University Press
ISBN: 0192514016
Category : Mathematics
Languages : en
Pages : 637
Book Description
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Function Spaces
Author: Krzysztof Jarosz
Publisher: American Mathematical Soc.
ISBN: 0821840614
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book consists of contributions by the participants of the Fifth Conference on Function Spaces, held at Southern Illinois University in May of 2006. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), $L{p $-spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects. The goal of the conference was to bring together mathematicians interested in various problems related to function spaces and to facilitate the exchange of ideas between people working on similar problems. Hence, the majority of papers in this book are accessible to non-experts. Some articles contain expositions of known results and discuss open problems, others contain new results.
Publisher: American Mathematical Soc.
ISBN: 0821840614
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book consists of contributions by the participants of the Fifth Conference on Function Spaces, held at Southern Illinois University in May of 2006. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), $L{p $-spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects. The goal of the conference was to bring together mathematicians interested in various problems related to function spaces and to facilitate the exchange of ideas between people working on similar problems. Hence, the majority of papers in this book are accessible to non-experts. Some articles contain expositions of known results and discuss open problems, others contain new results.
The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type
Author: Fritz Hörmann
Publisher: American Mathematical Society
ISBN: 1470419122
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula--an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special derivatives of such Eisenstein series. This result gives substantial evidence in the direction of Kudla's conjectures in arbitrary dimensions. The validity of the full set of conjectures of Kudla, in turn, would give a conceptual proof and far-reaching generalizations of the work of Gross and Zagier on the Birch and Swinnerton-Dyer conjecture. Titles in this series are co-published with the Centre de Recherches Mathématiques.
Publisher: American Mathematical Society
ISBN: 1470419122
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula--an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special derivatives of such Eisenstein series. This result gives substantial evidence in the direction of Kudla's conjectures in arbitrary dimensions. The validity of the full set of conjectures of Kudla, in turn, would give a conceptual proof and far-reaching generalizations of the work of Gross and Zagier on the Birch and Swinnerton-Dyer conjecture. Titles in this series are co-published with the Centre de Recherches Mathématiques.
La Formule des Traces Tordue d'apres le Friday Morning Seminar
Author: Jean-Pierre Labesse
Publisher: American Mathematical Soc.
ISBN: 0821894412
Category : Mathematics
Languages : en
Pages : 264
Book Description
La formule des traces pour un groupe reductif connexe arbitraire est due a James Arthur. Le cas tordu a fait l'objet du Friday Morning Seminar a l'Institute for Advanced Study de Princeton pendant l'annee academique 1983-1984. Lors de ce seminaire, des ex
Publisher: American Mathematical Soc.
ISBN: 0821894412
Category : Mathematics
Languages : en
Pages : 264
Book Description
La formule des traces pour un groupe reductif connexe arbitraire est due a James Arthur. Le cas tordu a fait l'objet du Friday Morning Seminar a l'Institute for Advanced Study de Princeton pendant l'annee academique 1983-1984. Lors de ce seminaire, des ex