Author: Octav Olteanu
Publisher: Cambridge Scholars Publishing
ISBN: 1527585050
Category : Mathematics
Languages : en
Pages : 180
Book Description
This book emphasizes some basic results in functional and classical analysis, including Hahn-Banach-type theorems, the Markov moment problem, polynomial approximation on unbounded subsets, convexity and convex optimization, elements of operator theory, a global method for convex monotone operators and a connection with the contraction principle. It points out the connection between linear continuous operators and convex continuous operators, and establishes their relationships with other fields of mathematics and physics. The book will appeal to students, PhD aspirants, researchers, professors, engineers, and any reader interested in mathematical analysis or its applications.
Convexity, Extension of Linear Operators, Approximation and Applications
Author: Octav Olteanu
Publisher: Cambridge Scholars Publishing
ISBN: 1527585050
Category : Mathematics
Languages : en
Pages : 180
Book Description
This book emphasizes some basic results in functional and classical analysis, including Hahn-Banach-type theorems, the Markov moment problem, polynomial approximation on unbounded subsets, convexity and convex optimization, elements of operator theory, a global method for convex monotone operators and a connection with the contraction principle. It points out the connection between linear continuous operators and convex continuous operators, and establishes their relationships with other fields of mathematics and physics. The book will appeal to students, PhD aspirants, researchers, professors, engineers, and any reader interested in mathematical analysis or its applications.
Publisher: Cambridge Scholars Publishing
ISBN: 1527585050
Category : Mathematics
Languages : en
Pages : 180
Book Description
This book emphasizes some basic results in functional and classical analysis, including Hahn-Banach-type theorems, the Markov moment problem, polynomial approximation on unbounded subsets, convexity and convex optimization, elements of operator theory, a global method for convex monotone operators and a connection with the contraction principle. It points out the connection between linear continuous operators and convex continuous operators, and establishes their relationships with other fields of mathematics and physics. The book will appeal to students, PhD aspirants, researchers, professors, engineers, and any reader interested in mathematical analysis or its applications.
Optimization by Vector Space Methods
Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Approximation Theory, Spline Functions and Applications
Author: S.P. Singh
Publisher: Springer Science & Business Media
ISBN: 9401126348
Category : Mathematics
Languages : en
Pages : 482
Book Description
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in approximation theory cardinal splines, B-splines, Euler-Frobenius polynomials, spline spaces with non-uniform knot sequences. A number of scientific applications are also highlighted, most notably applications to signal processing and digital im age processing. Developments in the area of approximation of functions examined in the course of our discussions include approximation of periodic phenomena over irregular node distributions, scattered data interpolation, Pade approximants in one and several variables, approximation properties of weighted Chebyshev polynomials, minimax approximations, and the Strang Fix conditions and their relation to radial functions. I express my sincere thanks to the members of the Advisory Commit tee, Professors B. Beauzamy, E. W. Cheney, J. Meinguet, D. Roux, and G. M. Phillips. My sincere appreciation and thanks go to A. Carbone, E. DePas cale, R. Charron, and B.
Publisher: Springer Science & Business Media
ISBN: 9401126348
Category : Mathematics
Languages : en
Pages : 482
Book Description
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in approximation theory cardinal splines, B-splines, Euler-Frobenius polynomials, spline spaces with non-uniform knot sequences. A number of scientific applications are also highlighted, most notably applications to signal processing and digital im age processing. Developments in the area of approximation of functions examined in the course of our discussions include approximation of periodic phenomena over irregular node distributions, scattered data interpolation, Pade approximants in one and several variables, approximation properties of weighted Chebyshev polynomials, minimax approximations, and the Strang Fix conditions and their relation to radial functions. I express my sincere thanks to the members of the Advisory Commit tee, Professors B. Beauzamy, E. W. Cheney, J. Meinguet, D. Roux, and G. M. Phillips. My sincere appreciation and thanks go to A. Carbone, E. DePas cale, R. Charron, and B.
Korovkin-type Approximation Theory and Its Applications
Author: Francesco Altomare
Publisher: Walter de Gruyter
ISBN: 9783110141788
Category : Mathematics
Languages : en
Pages : 648
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemańczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antić, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Publisher: Walter de Gruyter
ISBN: 9783110141788
Category : Mathematics
Languages : en
Pages : 648
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemańczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antić, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Perturbation theory for linear operators
Author: Tosio Kato
Publisher: Springer Science & Business Media
ISBN: 3662126788
Category : Mathematics
Languages : en
Pages : 610
Book Description
Publisher: Springer Science & Business Media
ISBN: 3662126788
Category : Mathematics
Languages : en
Pages : 610
Book Description
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Convexity and Its Applications
Author: GRUBER
Publisher: Birkhäuser
ISBN: 3034858582
Category : Science
Languages : en
Pages : 419
Book Description
This collection of surveys consists in part of extensions of papers presented at the conferences on convexity at the Technische Universitat Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume «Contributions to Geometry» edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of many of the more important facets of convexity and its applications. Besides being an up to date reference work this volume can be used as an advanced treatise on convexity and related fields. We sincerely hope that it will inspire future research. Fenchel, in his paper, gives an historical account of convexity showing many important but not so well known facets. The articles of Papini and Phelps relate convexity to problems of functional analysis on nearest points, nonexpansive maps and the extremal structure of convex sets. A bridge to mathematical physics in the sense of Polya and Szego is provided by the survey of Bandle on isoperimetric inequalities, and Bachem's paper illustrates the importance of convexity for optimization. The contribution of Coxeter deals with a classical topic in geometry, the lines on the cubic surface whereas Leichtweiss shows the close connections between convexity and differential geometry. The exhaustive survey of Chalk on point lattices is related to algebraic number theory. A topic important for applications in biology, geology etc.
Publisher: Birkhäuser
ISBN: 3034858582
Category : Science
Languages : en
Pages : 419
Book Description
This collection of surveys consists in part of extensions of papers presented at the conferences on convexity at the Technische Universitat Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume «Contributions to Geometry» edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of many of the more important facets of convexity and its applications. Besides being an up to date reference work this volume can be used as an advanced treatise on convexity and related fields. We sincerely hope that it will inspire future research. Fenchel, in his paper, gives an historical account of convexity showing many important but not so well known facets. The articles of Papini and Phelps relate convexity to problems of functional analysis on nearest points, nonexpansive maps and the extremal structure of convex sets. A bridge to mathematical physics in the sense of Polya and Szego is provided by the survey of Bandle on isoperimetric inequalities, and Bachem's paper illustrates the importance of convexity for optimization. The contribution of Coxeter deals with a classical topic in geometry, the lines on the cubic surface whereas Leichtweiss shows the close connections between convexity and differential geometry. The exhaustive survey of Chalk on point lattices is related to algebraic number theory. A topic important for applications in biology, geology etc.
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Author: Heinz H. Bauschke
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 624
Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 624
Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Strict Convexity and Complex Strict Convexity
Author: Istratescu
Publisher: Routledge
ISBN: 1351413325
Category : Mathematics
Languages : en
Pages : 332
Book Description
This important work provides a comprehensive overview of the properties of Banachspaces related to strict convexity and a survey of significant applications-uniting a wealthof information previously scattered throughout the mathematical literature in a well-organized,accessible format.After introducing the subject through a discussion of the basic results of linear functionalanalysis, this unique book proceeds to investigate the characteristics of strictly convexspaces and related classes, including uniformly convex spaces, and examine important applicationsregarding approximation theory and fixed point theory. Following this extensivetreatment, the book discusses complex strictly convex spaces and related spaces- alsowith applications. Complete, clearly elucidated proofs accompany results throughout thebook, and ample references are provided to aid further research of the subject.Strict Convexity and Complex Strict Convexity is essential fot mathematicians and studentsinterested in geometric theory of Banach spaces and applications to approximationtheory and fixed point theory, and is of great value to engineers working in optimizationstudies. In addition, this volume serves as an excellent text for a graduate course inGeometric Theory of Banach Spaces.
Publisher: Routledge
ISBN: 1351413325
Category : Mathematics
Languages : en
Pages : 332
Book Description
This important work provides a comprehensive overview of the properties of Banachspaces related to strict convexity and a survey of significant applications-uniting a wealthof information previously scattered throughout the mathematical literature in a well-organized,accessible format.After introducing the subject through a discussion of the basic results of linear functionalanalysis, this unique book proceeds to investigate the characteristics of strictly convexspaces and related classes, including uniformly convex spaces, and examine important applicationsregarding approximation theory and fixed point theory. Following this extensivetreatment, the book discusses complex strictly convex spaces and related spaces- alsowith applications. Complete, clearly elucidated proofs accompany results throughout thebook, and ample references are provided to aid further research of the subject.Strict Convexity and Complex Strict Convexity is essential fot mathematicians and studentsinterested in geometric theory of Banach spaces and applications to approximationtheory and fixed point theory, and is of great value to engineers working in optimizationstudies. In addition, this volume serves as an excellent text for a graduate course inGeometric Theory of Banach Spaces.